router_mini_lm_l6 / README.md
Totole's picture
Add SetFit model
1d38dec verified
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
base_model: sentence-transformers/all-MiniLM-L12-v2
metrics:
  - accuracy
widget:
  - text: >-
      Quel est le principal litige dans les projets de construction, et quel
      droit de la partie accusee
  - text: >-
      Clarifier quels sont les facteurs déterminants dans le choix d'un
      emplacement pour un nouveau magasin
  - text: Compare ces deux documents
  - text: >-
      Can you explain the process of wind energy generation and discuss its
      environmental impacts compared to those of hydroelectric power?
  - text: >-
      Could you restate the advantages of using project management software that
      were mentioned earlier? Provide a linkedin post about it
pipeline_tag: text-classification
inference: true
model-index:
  - name: SetFit with sentence-transformers/all-MiniLM-L12-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.9333333333333333
            name: Accuracy

SetFit with sentence-transformers/all-MiniLM-L12-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
sub_queries
  • 'Could you break down the main factors I should consider when researching market prices and how to effectively communicate our needs to the supplier during negotiations?'
  • 'Comment faire pousser une plante et le mesurer ?'
  • "Quel est le meilleur matériau pour l'isolation phonique et thermique?"
simple_questions
  • 'What are the key strategies for maintaining efficient communication in a remote work environment?'
  • 'Could you summarize the ways a person can help in adapting to climate change ?'
  • 'What are the current trends in construction?'
exchange
  • 'Could you please restate your last explanation using simpler terms?'
  • 'Could you restate the impact of augmented reality on design practices?'
  • 'Pourriez-vous me donner un résumé des principaux points abordés dans notre conversation précédente ?'
compare
  • 'How do the conclusions differ?'
  • 'Contrast the main arguments presented in each paper'
  • 'Quelles sont les principales différences dans les programmes éducatifs décrits dans ces documents ?'
summary
  • 'Que dois-je retenir de ce doc ?'
  • 'What are the key assertions made within the text'
  • 'What are the most important argument stated in the document?'

Evaluation

Metrics

Label Accuracy
all 0.9333

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("egis-group/router_mini_lm_l6")
# Run inference
preds = model("Compare ces deux documents")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 13.4389 48
Label Training Sample Count
negative 0
positive 0

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0003 1 0.4073 -
0.0151 50 0.3054 -
0.0303 100 0.2066 -
0.0454 150 0.2664 -
0.0606 200 0.2463 -
0.0757 250 0.214 -
0.0909 300 0.1892 -
0.1060 350 0.1402 -
0.1212 400 0.1804 -
0.1363 450 0.0571 -
0.1515 500 0.0979 -
0.1666 550 0.1775 -
0.1818 600 0.0377 -
0.1969 650 0.0398 -
0.2121 700 0.0423 -
0.2272 750 0.0036 -
0.2424 800 0.0079 -
0.2575 850 0.0049 -
0.2726 900 0.0018 -
0.2878 950 0.0018 -
0.3029 1000 0.0032 -
0.3181 1050 0.0019 -
0.3332 1100 0.0008 -
0.3484 1150 0.0006 -
0.3635 1200 0.0006 -
0.3787 1250 0.0011 -
0.3938 1300 0.0005 -
0.4090 1350 0.001 -
0.4241 1400 0.0009 -
0.4393 1450 0.0004 -
0.4544 1500 0.0003 -
0.4696 1550 0.0003 -
0.4847 1600 0.0006 -
0.4998 1650 0.0003 -
0.5150 1700 0.0002 -
0.5301 1750 0.0002 -
0.5453 1800 0.0005 -
0.5604 1850 0.0003 -
0.5756 1900 0.0002 -
0.5907 1950 0.0002 -
0.6059 2000 0.0001 -
0.6210 2050 0.0002 -
0.6362 2100 0.0002 -
0.6513 2150 0.0001 -
0.6665 2200 0.0002 -
0.6816 2250 0.0002 -
0.6968 2300 0.0002 -
0.7119 2350 0.0002 -
0.7271 2400 0.0002 -
0.7422 2450 0.0002 -
0.7573 2500 0.0001 -
0.7725 2550 0.0001 -
0.7876 2600 0.0002 -
0.8028 2650 0.0001 -
0.8179 2700 0.0002 -
0.8331 2750 0.0007 -
0.8482 2800 0.0001 -
0.8634 2850 0.0001 -
0.8785 2900 0.0001 -
0.8937 2950 0.0001 -
0.9088 3000 0.0001 -
0.9240 3050 0.0002 -
0.9391 3100 0.0001 -
0.9543 3150 0.0001 -
0.9694 3200 0.0001 -
0.9846 3250 0.0001 -
0.9997 3300 0.0002 -
1.0 3301 - 0.0001
1.0148 3350 0.0003 -
1.0300 3400 0.0002 -
1.0451 3450 0.0001 -
1.0603 3500 0.0001 -
1.0754 3550 0.0001 -
1.0906 3600 0.0001 -
1.1057 3650 0.0001 -
1.1209 3700 0.0002 -
1.1360 3750 0.0001 -
1.1512 3800 0.0001 -
1.1663 3850 0.0001 -
1.1815 3900 0.0001 -
1.1966 3950 0.001 -
1.2118 4000 0.0001 -
1.2269 4050 0.0001 -
1.2420 4100 0.0001 -
1.2572 4150 0.0001 -
1.2723 4200 0.0001 -
1.2875 4250 0.0001 -
1.3026 4300 0.0001 -
1.3178 4350 0.0 -
1.3329 4400 0.0001 -
1.3481 4450 0.0001 -
1.3632 4500 0.0001 -
1.3784 4550 0.0001 -
1.3935 4600 0.0001 -
1.4087 4650 0.0001 -
1.4238 4700 0.0001 -
1.4390 4750 0.0001 -
1.4541 4800 0.0 -
1.4693 4850 0.0 -
1.4844 4900 0.0001 -
1.4995 4950 0.0001 -
1.5147 5000 0.0001 -
1.5298 5050 0.0001 -
1.5450 5100 0.0 -
1.5601 5150 0.0001 -
1.5753 5200 0.0 -
1.5904 5250 0.0 -
1.6056 5300 0.0001 -
1.6207 5350 0.0 -
1.6359 5400 0.0001 -
1.6510 5450 0.0 -
1.6662 5500 0.0001 -
1.6813 5550 0.0001 -
1.6965 5600 0.0 -
1.7116 5650 0.0 -
1.7267 5700 0.0 -
1.7419 5750 0.0001 -
1.7570 5800 0.0001 -
1.7722 5850 0.0 -
1.7873 5900 0.0 -
1.8025 5950 0.0001 -
1.8176 6000 0.0002 -
1.8328 6050 0.0 -
1.8479 6100 0.0001 -
1.8631 6150 0.0001 -
1.8782 6200 0.0001 -
1.8934 6250 0.0 -
1.9085 6300 0.0001 -
1.9237 6350 0.0 -
1.9388 6400 0.0001 -
1.9540 6450 0.0001 -
1.9691 6500 0.0 -
1.9842 6550 0.0 -
1.9994 6600 0.0 -
2.0 6602 - 0.0
2.0145 6650 0.0 -
2.0297 6700 0.0 -
2.0448 6750 0.0 -
2.0600 6800 0.0 -
2.0751 6850 0.0 -
2.0903 6900 0.0001 -
2.1054 6950 0.0 -
2.1206 7000 0.0 -
2.1357 7050 0.0 -
2.1509 7100 0.0001 -
2.1660 7150 0.0 -
2.1812 7200 0.0 -
2.1963 7250 0.0 -
2.2115 7300 0.0 -
2.2266 7350 0.0001 -
2.2417 7400 0.0 -
2.2569 7450 0.0 -
2.2720 7500 0.0001 -
2.2872 7550 0.0001 -
2.3023 7600 0.0 -
2.3175 7650 0.0 -
2.3326 7700 0.0 -
2.3478 7750 0.0 -
2.3629 7800 0.0 -
2.3781 7850 0.0 -
2.3932 7900 0.0 -
2.4084 7950 0.0 -
2.4235 8000 0.0 -
2.4387 8050 0.0 -
2.4538 8100 0.0001 -
2.4689 8150 0.0 -
2.4841 8200 0.0001 -
2.4992 8250 0.0 -
2.5144 8300 0.0 -
2.5295 8350 0.0001 -
2.5447 8400 0.0 -
2.5598 8450 0.0 -
2.5750 8500 0.0 -
2.5901 8550 0.0001 -
2.6053 8600 0.0001 -
2.6204 8650 0.0 -
2.6356 8700 0.0 -
2.6507 8750 0.0 -
2.6659 8800 0.0 -
2.6810 8850 0.0 -
2.6962 8900 0.0 -
2.7113 8950 0.0 -
2.7264 9000 0.0 -
2.7416 9050 0.0001 -
2.7567 9100 0.0001 -
2.7719 9150 0.0 -
2.7870 9200 0.0001 -
2.8022 9250 0.0 -
2.8173 9300 0.0 -
2.8325 9350 0.0 -
2.8476 9400 0.0 -
2.8628 9450 0.0 -
2.8779 9500 0.0 -
2.8931 9550 0.0 -
2.9082 9600 0.0 -
2.9234 9650 0.0 -
2.9385 9700 0.0 -
2.9537 9750 0.0 -
2.9688 9800 0.0 -
2.9839 9850 0.0 -
2.9991 9900 0.0 -
3.0 9903 - 0.0
3.0142 9950 0.0 -
3.0294 10000 0.0 -
3.0445 10050 0.0 -
3.0597 10100 0.0 -
3.0748 10150 0.0 -
3.0900 10200 0.0 -
3.1051 10250 0.0001 -
3.1203 10300 0.0001 -
3.1354 10350 0.0 -
3.1506 10400 0.0 -
3.1657 10450 0.0 -
3.1809 10500 0.0 -
3.1960 10550 0.0 -
3.2111 10600 0.0 -
3.2263 10650 0.0 -
3.2414 10700 0.0 -
3.2566 10750 0.0 -
3.2717 10800 0.0 -
3.2869 10850 0.0 -
3.3020 10900 0.0 -
3.3172 10950 0.0 -
3.3323 11000 0.0 -
3.3475 11050 0.0 -
3.3626 11100 0.0 -
3.3778 11150 0.0 -
3.3929 11200 0.0 -
3.4081 11250 0.0001 -
3.4232 11300 0.0 -
3.4384 11350 0.0 -
3.4535 11400 0.0 -
3.4686 11450 0.0 -
3.4838 11500 0.0 -
3.4989 11550 0.0 -
3.5141 11600 0.0 -
3.5292 11650 0.0 -
3.5444 11700 0.0 -
3.5595 11750 0.0 -
3.5747 11800 0.0 -
3.5898 11850 0.0 -
3.6050 11900 0.0 -
3.6201 11950 0.0 -
3.6353 12000 0.0 -
3.6504 12050 0.0 -
3.6656 12100 0.0001 -
3.6807 12150 0.0 -
3.6958 12200 0.0 -
3.7110 12250 0.0 -
3.7261 12300 0.0 -
3.7413 12350 0.0 -
3.7564 12400 0.0 -
3.7716 12450 0.0 -
3.7867 12500 0.0 -
3.8019 12550 0.0 -
3.8170 12600 0.0 -
3.8322 12650 0.0 -
3.8473 12700 0.0 -
3.8625 12750 0.0 -
3.8776 12800 0.0 -
3.8928 12850 0.0 -
3.9079 12900 0.0 -
3.9231 12950 0.0 -
3.9382 13000 0.0 -
3.9533 13050 0.0 -
3.9685 13100 0.0 -
3.9836 13150 0.0 -
3.9988 13200 0.0 -
4.0 13204 - 0.0
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.39.0
  • PyTorch: 2.3.0+cu121
  • Datasets: 2.19.2
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}