Totole commited on
Commit
1d38dec
1 Parent(s): b69c2c9

Add SetFit model

Browse files
Files changed (5) hide show
  1. README.md +289 -284
  2. config.json +1 -1
  3. config_setfit.json +2 -2
  4. model.safetensors +1 -1
  5. model_head.pkl +1 -1
README.md CHANGED
@@ -9,11 +9,15 @@ base_model: sentence-transformers/all-MiniLM-L12-v2
9
  metrics:
10
  - accuracy
11
  widget:
12
- - text: Could you provide the average temperature, annual rainfall in Paris?
13
- - text: Can you provide a summary of the key points discussed about urban development?
 
 
14
  - text: Compare ces deux documents
15
- - text: What are the steps required to apply for a passport?
16
- - text: What is the basic definition of seismic design?
 
 
17
  pipeline_tag: text-classification
18
  inference: true
19
  model-index:
@@ -28,7 +32,7 @@ model-index:
28
  split: test
29
  metrics:
30
  - type: accuracy
31
- value: 0.7333333333333333
32
  name: Accuracy
33
  ---
34
 
@@ -60,20 +64,20 @@ The model has been trained using an efficient few-shot learning technique that i
60
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
 
62
  ### Model Labels
63
- | Label | Examples |
64
- |:-----------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
- | sub_queries | <ul><li>'How can I use 3D print to build a bridge and how much would it be?'</li><li>'Pourriez-vous détailler les critères spécifiques utilisés pour évaluer la durabilité des matériaux de construction, les types de systèmes HVAC les plus efficaces actuellement en usage dans les bâtiments verts, et les différentes méthodes employées pour réduire les déchets pendant la phase de construction ?'</li><li>'Comment faire une etude de marche? Quelles sont les meilleures sources?'</li></ul> |
66
- | summary | <ul><li>'Quelles informations primordiales me conseillez-vous de mémoriser de ce document'</li><li>'Quels sont les points principaux à retenir'</li><li>'What is the primary theme of the document ?'</li></ul> |
67
- | exchange | <ul><li>'Pourriez-vous me fournir un résumé des points clés abordés dans notre discussion précédente ?'</li><li>'Quels sont les points clés abordés dans notre discussion précédente ?'</li><li>'Could you restate the main points discussed about acoustic engineering?'</li></ul> |
68
- | simple_questions | <ul><li>'Quelle est le principal moteur de la croissance économique ? Fais un post linkedin sur le sujet'</li><li>'Pourriez-vous résumer les bénéfices que les utilisateurs peuvent tirer des récentes avancées en matériel informatique ?'</li><li>'What is the purpose of environmental impact assessments?'</li></ul> |
69
- | compare | <ul><li>'Compare the methodologies'</li><li>'Compare the nutritional information provided on these food labels'</li><li>'Analysez comment la structure narrative de ces manuscrits influence leur message'</li></ul> |
70
 
71
  ## Evaluation
72
 
73
  ### Metrics
74
  | Label | Accuracy |
75
  |:--------|:---------|
76
- | **all** | 0.7333 |
77
 
78
  ## Uses
79
 
@@ -125,7 +129,7 @@ preds = model("Compare ces deux documents")
125
  ### Training Set Metrics
126
  | Training set | Min | Median | Max |
127
  |:-------------|:----|:--------|:----|
128
- | Word count | 3 | 13.4636 | 48 |
129
 
130
  | Label | Training Sample Count |
131
  |:---------|:----------------------|
@@ -150,276 +154,277 @@ preds = model("Compare ces deux documents")
150
  - load_best_model_at_end: True
151
 
152
  ### Training Results
153
- | Epoch | Step | Training Loss | Validation Loss |
154
- |:-------:|:--------:|:-------------:|:---------------:|
155
- | 0.0003 | 1 | 0.3239 | - |
156
- | 0.0152 | 50 | 0.3443 | - |
157
- | 0.0304 | 100 | 0.2282 | - |
158
- | 0.0456 | 150 | 0.2576 | - |
159
- | 0.0608 | 200 | 0.2587 | - |
160
- | 0.0760 | 250 | 0.1747 | - |
161
- | 0.0912 | 300 | 0.1916 | - |
162
- | 0.1064 | 350 | 0.1638 | - |
163
- | 0.1216 | 400 | 0.1459 | - |
164
- | 0.1368 | 450 | 0.1322 | - |
165
- | 0.1520 | 500 | 0.038 | - |
166
- | 0.1672 | 550 | 0.0636 | - |
167
- | 0.1824 | 600 | 0.0613 | - |
168
- | 0.1976 | 650 | 0.0322 | - |
169
- | 0.2128 | 700 | 0.0159 | - |
170
- | 0.2280 | 750 | 0.0029 | - |
171
- | 0.2432 | 800 | 0.0012 | - |
172
- | 0.2584 | 850 | 0.0019 | - |
173
- | 0.2736 | 900 | 0.0025 | - |
174
- | 0.2888 | 950 | 0.0028 | - |
175
- | 0.3040 | 1000 | 0.001 | - |
176
- | 0.3192 | 1050 | 0.0014 | - |
177
- | 0.3344 | 1100 | 0.0007 | - |
178
- | 0.3497 | 1150 | 0.001 | - |
179
- | 0.3649 | 1200 | 0.0014 | - |
180
- | 0.3801 | 1250 | 0.0003 | - |
181
- | 0.3953 | 1300 | 0.0005 | - |
182
- | 0.4105 | 1350 | 0.0003 | - |
183
- | 0.4257 | 1400 | 0.0004 | - |
184
- | 0.4409 | 1450 | 0.0003 | - |
185
- | 0.4561 | 1500 | 0.0004 | - |
186
- | 0.4713 | 1550 | 0.0003 | - |
187
- | 0.4865 | 1600 | 0.0002 | - |
188
- | 0.5017 | 1650 | 0.0004 | - |
189
- | 0.5169 | 1700 | 0.0003 | - |
190
- | 0.5321 | 1750 | 0.0003 | - |
191
- | 0.5473 | 1800 | 0.0004 | - |
192
- | 0.5625 | 1850 | 0.0002 | - |
193
- | 0.5777 | 1900 | 0.0001 | - |
194
- | 0.5929 | 1950 | 0.0001 | - |
195
- | 0.6081 | 2000 | 0.0003 | - |
196
- | 0.6233 | 2050 | 0.0002 | - |
197
- | 0.6385 | 2100 | 0.0001 | - |
198
- | 0.6537 | 2150 | 0.0002 | - |
199
- | 0.6689 | 2200 | 0.0002 | - |
200
- | 0.6841 | 2250 | 0.0001 | - |
201
- | 0.6993 | 2300 | 0.0002 | - |
202
- | 0.7145 | 2350 | 0.0003 | - |
203
- | 0.7297 | 2400 | 0.0002 | - |
204
- | 0.7449 | 2450 | 0.0002 | - |
205
- | 0.7601 | 2500 | 0.0001 | - |
206
- | 0.7753 | 2550 | 0.0002 | - |
207
- | 0.7905 | 2600 | 0.0001 | - |
208
- | 0.8057 | 2650 | 0.0001 | - |
209
- | 0.8209 | 2700 | 0.0001 | - |
210
- | 0.8361 | 2750 | 0.0001 | - |
211
- | 0.8513 | 2800 | 0.0001 | - |
212
- | 0.8665 | 2850 | 0.0001 | - |
213
- | 0.8817 | 2900 | 0.0001 | - |
214
- | 0.8969 | 2950 | 0.0001 | - |
215
- | 0.9121 | 3000 | 0.0001 | - |
216
- | 0.9273 | 3050 | 0.0001 | - |
217
- | 0.9425 | 3100 | 0.0001 | - |
218
- | 0.9577 | 3150 | 0.0001 | - |
219
- | 0.9729 | 3200 | 0.0001 | - |
220
- | 0.9881 | 3250 | 0.0001 | - |
221
- | 1.0 | 3289 | - | 0.0982 |
222
- | 1.0033 | 3300 | 0.0001 | - |
223
- | 1.0185 | 3350 | 0.0001 | - |
224
- | 1.0337 | 3400 | 0.0001 | - |
225
- | 1.0490 | 3450 | 0.0001 | - |
226
- | 1.0642 | 3500 | 0.0001 | - |
227
- | 1.0794 | 3550 | 0.0249 | - |
228
- | 1.0946 | 3600 | 0.0002 | - |
229
- | 1.1098 | 3650 | 0.0001 | - |
230
- | 1.1250 | 3700 | 0.0001 | - |
231
- | 1.1402 | 3750 | 0.0001 | - |
232
- | 1.1554 | 3800 | 0.0001 | - |
233
- | 1.1706 | 3850 | 0.0001 | - |
234
- | 1.1858 | 3900 | 0.0001 | - |
235
- | 1.2010 | 3950 | 0.0001 | - |
236
- | 1.2162 | 4000 | 0.0001 | - |
237
- | 1.2314 | 4050 | 0.0 | - |
238
- | 1.2466 | 4100 | 0.0001 | - |
239
- | 1.2618 | 4150 | 0.0 | - |
240
- | 1.2770 | 4200 | 0.0001 | - |
241
- | 1.2922 | 4250 | 0.0 | - |
242
- | 1.3074 | 4300 | 0.0001 | - |
243
- | 1.3226 | 4350 | 0.0001 | - |
244
- | 1.3378 | 4400 | 0.0001 | - |
245
- | 1.3530 | 4450 | 0.0001 | - |
246
- | 1.3682 | 4500 | 0.0001 | - |
247
- | 1.3834 | 4550 | 0.0001 | - |
248
- | 1.3986 | 4600 | 0.0001 | - |
249
- | 1.4138 | 4650 | 0.0001 | - |
250
- | 1.4290 | 4700 | 0.0001 | - |
251
- | 1.4442 | 4750 | 0.0001 | - |
252
- | 1.4594 | 4800 | 0.0001 | - |
253
- | 1.4746 | 4850 | 0.0001 | - |
254
- | 1.4898 | 4900 | 0.0 | - |
255
- | 1.5050 | 4950 | 0.0 | - |
256
- | 1.5202 | 5000 | 0.0 | - |
257
- | 1.5354 | 5050 | 0.0 | - |
258
- | 1.5506 | 5100 | 0.0 | - |
259
- | 1.5658 | 5150 | 0.0001 | - |
260
- | 1.5810 | 5200 | 0.0001 | - |
261
- | 1.5962 | 5250 | 0.0 | - |
262
- | 1.6114 | 5300 | 0.0 | - |
263
- | 1.6266 | 5350 | 0.0001 | - |
264
- | 1.6418 | 5400 | 0.0001 | - |
265
- | 1.6570 | 5450 | 0.0 | - |
266
- | 1.6722 | 5500 | 0.0001 | - |
267
- | 1.6874 | 5550 | 0.0 | - |
268
- | 1.7026 | 5600 | 0.0001 | - |
269
- | 1.7178 | 5650 | 0.0 | - |
270
- | 1.7330 | 5700 | 0.0001 | - |
271
- | 1.7483 | 5750 | 0.0001 | - |
272
- | 1.7635 | 5800 | 0.0001 | - |
273
- | 1.7787 | 5850 | 0.0001 | - |
274
- | 1.7939 | 5900 | 0.0 | - |
275
- | 1.8091 | 5950 | 0.0001 | - |
276
- | 1.8243 | 6000 | 0.0001 | - |
277
- | 1.8395 | 6050 | 0.0 | - |
278
- | 1.8547 | 6100 | 0.0001 | - |
279
- | 1.8699 | 6150 | 0.0 | - |
280
- | 1.8851 | 6200 | 0.0 | - |
281
- | 1.9003 | 6250 | 0.0 | - |
282
- | 1.9155 | 6300 | 0.0 | - |
283
- | 1.9307 | 6350 | 0.0001 | - |
284
- | 1.9459 | 6400 | 0.0 | - |
285
- | 1.9611 | 6450 | 0.0 | - |
286
- | 1.9763 | 6500 | 0.0001 | - |
287
- | 1.9915 | 6550 | 0.0 | - |
288
- | **2.0** | **6578** | **-** | **0.0939** |
289
- | 2.0067 | 6600 | 0.0001 | - |
290
- | 2.0219 | 6650 | 0.0001 | - |
291
- | 2.0371 | 6700 | 0.0001 | - |
292
- | 2.0523 | 6750 | 0.0001 | - |
293
- | 2.0675 | 6800 | 0.0 | - |
294
- | 2.0827 | 6850 | 0.0 | - |
295
- | 2.0979 | 6900 | 0.0 | - |
296
- | 2.1131 | 6950 | 0.0 | - |
297
- | 2.1283 | 7000 | 0.0001 | - |
298
- | 2.1435 | 7050 | 0.0001 | - |
299
- | 2.1587 | 7100 | 0.0 | - |
300
- | 2.1739 | 7150 | 0.0 | - |
301
- | 2.1891 | 7200 | 0.0001 | - |
302
- | 2.2043 | 7250 | 0.0001 | - |
303
- | 2.2195 | 7300 | 0.0 | - |
304
- | 2.2347 | 7350 | 0.0 | - |
305
- | 2.2499 | 7400 | 0.0 | - |
306
- | 2.2651 | 7450 | 0.0 | - |
307
- | 2.2803 | 7500 | 0.0 | - |
308
- | 2.2955 | 7550 | 0.0001 | - |
309
- | 2.3107 | 7600 | 0.0 | - |
310
- | 2.3259 | 7650 | 0.0001 | - |
311
- | 2.3411 | 7700 | 0.0 | - |
312
- | 2.3563 | 7750 | 0.0001 | - |
313
- | 2.3715 | 7800 | 0.0 | - |
314
- | 2.3867 | 7850 | 0.0001 | - |
315
- | 2.4019 | 7900 | 0.0 | - |
316
- | 2.4171 | 7950 | 0.0 | - |
317
- | 2.4324 | 8000 | 0.0 | - |
318
- | 2.4476 | 8050 | 0.0001 | - |
319
- | 2.4628 | 8100 | 0.0001 | - |
320
- | 2.4780 | 8150 | 0.0 | - |
321
- | 2.4932 | 8200 | 0.0001 | - |
322
- | 2.5084 | 8250 | 0.0001 | - |
323
- | 2.5236 | 8300 | 0.0001 | - |
324
- | 2.5388 | 8350 | 0.0 | - |
325
- | 2.5540 | 8400 | 0.0 | - |
326
- | 2.5692 | 8450 | 0.0 | - |
327
- | 2.5844 | 8500 | 0.0 | - |
328
- | 2.5996 | 8550 | 0.0 | - |
329
- | 2.6148 | 8600 | 0.0 | - |
330
- | 2.6300 | 8650 | 0.0 | - |
331
- | 2.6452 | 8700 | 0.0 | - |
332
- | 2.6604 | 8750 | 0.0 | - |
333
- | 2.6756 | 8800 | 0.0 | - |
334
- | 2.6908 | 8850 | 0.0 | - |
335
- | 2.7060 | 8900 | 0.0001 | - |
336
- | 2.7212 | 8950 | 0.0 | - |
337
- | 2.7364 | 9000 | 0.0 | - |
338
- | 2.7516 | 9050 | 0.0001 | - |
339
- | 2.7668 | 9100 | 0.0 | - |
340
- | 2.7820 | 9150 | 0.0 | - |
341
- | 2.7972 | 9200 | 0.0 | - |
342
- | 2.8124 | 9250 | 0.0 | - |
343
- | 2.8276 | 9300 | 0.0 | - |
344
- | 2.8428 | 9350 | 0.0 | - |
345
- | 2.8580 | 9400 | 0.0 | - |
346
- | 2.8732 | 9450 | 0.0 | - |
347
- | 2.8884 | 9500 | 0.0 | - |
348
- | 2.9036 | 9550 | 0.0 | - |
349
- | 2.9188 | 9600 | 0.0 | - |
350
- | 2.9340 | 9650 | 0.0 | - |
351
- | 2.9492 | 9700 | 0.0 | - |
352
- | 2.9644 | 9750 | 0.0 | - |
353
- | 2.9796 | 9800 | 0.0 | - |
354
- | 2.9948 | 9850 | 0.0 | - |
355
- | 3.0 | 9867 | - | 0.0951 |
356
- | 3.0100 | 9900 | 0.0 | - |
357
- | 3.0252 | 9950 | 0.0 | - |
358
- | 3.0404 | 10000 | 0.0 | - |
359
- | 3.0556 | 10050 | 0.0 | - |
360
- | 3.0708 | 10100 | 0.0 | - |
361
- | 3.0860 | 10150 | 0.0 | - |
362
- | 3.1012 | 10200 | 0.0 | - |
363
- | 3.1164 | 10250 | 0.0 | - |
364
- | 3.1317 | 10300 | 0.0 | - |
365
- | 3.1469 | 10350 | 0.0 | - |
366
- | 3.1621 | 10400 | 0.0 | - |
367
- | 3.1773 | 10450 | 0.0001 | - |
368
- | 3.1925 | 10500 | 0.0 | - |
369
- | 3.2077 | 10550 | 0.0 | - |
370
- | 3.2229 | 10600 | 0.0 | - |
371
- | 3.2381 | 10650 | 0.0 | - |
372
- | 3.2533 | 10700 | 0.0 | - |
373
- | 3.2685 | 10750 | 0.0 | - |
374
- | 3.2837 | 10800 | 0.0 | - |
375
- | 3.2989 | 10850 | 0.0 | - |
376
- | 3.3141 | 10900 | 0.0 | - |
377
- | 3.3293 | 10950 | 0.0 | - |
378
- | 3.3445 | 11000 | 0.0 | - |
379
- | 3.3597 | 11050 | 0.0 | - |
380
- | 3.3749 | 11100 | 0.0 | - |
381
- | 3.3901 | 11150 | 0.0 | - |
382
- | 3.4053 | 11200 | 0.0 | - |
383
- | 3.4205 | 11250 | 0.0 | - |
384
- | 3.4357 | 11300 | 0.0 | - |
385
- | 3.4509 | 11350 | 0.0 | - |
386
- | 3.4661 | 11400 | 0.0 | - |
387
- | 3.4813 | 11450 | 0.0 | - |
388
- | 3.4965 | 11500 | 0.0 | - |
389
- | 3.5117 | 11550 | 0.0 | - |
390
- | 3.5269 | 11600 | 0.0 | - |
391
- | 3.5421 | 11650 | 0.0 | - |
392
- | 3.5573 | 11700 | 0.0 | - |
393
- | 3.5725 | 11750 | 0.0 | - |
394
- | 3.5877 | 11800 | 0.0 | - |
395
- | 3.6029 | 11850 | 0.0 | - |
396
- | 3.6181 | 11900 | 0.0 | - |
397
- | 3.6333 | 11950 | 0.0 | - |
398
- | 3.6485 | 12000 | 0.0 | - |
399
- | 3.6637 | 12050 | 0.0 | - |
400
- | 3.6789 | 12100 | 0.0 | - |
401
- | 3.6941 | 12150 | 0.0 | - |
402
- | 3.7093 | 12200 | 0.0 | - |
403
- | 3.7245 | 12250 | 0.0 | - |
404
- | 3.7397 | 12300 | 0.0 | - |
405
- | 3.7549 | 12350 | 0.0 | - |
406
- | 3.7701 | 12400 | 0.0 | - |
407
- | 3.7853 | 12450 | 0.0 | - |
408
- | 3.8005 | 12500 | 0.0 | - |
409
- | 3.8157 | 12550 | 0.0 | - |
410
- | 3.8310 | 12600 | 0.0 | - |
411
- | 3.8462 | 12650 | 0.0 | - |
412
- | 3.8614 | 12700 | 0.0 | - |
413
- | 3.8766 | 12750 | 0.0 | - |
414
- | 3.8918 | 12800 | 0.0 | - |
415
- | 3.9070 | 12850 | 0.0 | - |
416
- | 3.9222 | 12900 | 0.0 | - |
417
- | 3.9374 | 12950 | 0.0 | - |
418
- | 3.9526 | 13000 | 0.0 | - |
419
- | 3.9678 | 13050 | 0.0 | - |
420
- | 3.9830 | 13100 | 0.0 | - |
421
- | 3.9982 | 13150 | 0.0 | - |
422
- | 4.0 | 13156 | - | 0.0954 |
 
423
 
424
  * The bold row denotes the saved checkpoint.
425
  ### Framework Versions
 
9
  metrics:
10
  - accuracy
11
  widget:
12
+ - text: Quel est le principal litige dans les projets de construction, et quel droit
13
+ de la partie accusee
14
+ - text: Clarifier quels sont les facteurs déterminants dans le choix d'un emplacement
15
+ pour un nouveau magasin
16
  - text: Compare ces deux documents
17
+ - text: Can you explain the process of wind energy generation and discuss its environmental
18
+ impacts compared to those of hydroelectric power?
19
+ - text: Could you restate the advantages of using project management software that
20
+ were mentioned earlier? Provide a linkedin post about it
21
  pipeline_tag: text-classification
22
  inference: true
23
  model-index:
 
32
  split: test
33
  metrics:
34
  - type: accuracy
35
+ value: 0.9333333333333333
36
  name: Accuracy
37
  ---
38
 
 
64
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
 
66
  ### Model Labels
67
+ | Label | Examples |
68
+ |:-----------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | sub_queries | <ul><li>'Could you break down the main factors I should consider when researching market prices and how to effectively communicate our needs to the supplier during negotiations?'</li><li>'Comment faire pousser une plante et le mesurer ?'</li><li>"Quel est le meilleur matériau pour l'isolation phonique et thermique?"</li></ul> |
70
+ | simple_questions | <ul><li>'What are the key strategies for maintaining efficient communication in a remote work environment?'</li><li>'Could you summarize the ways a person can help in adapting to climate change ?'</li><li>'What are the current trends in construction?'</li></ul> |
71
+ | exchange | <ul><li>'Could you please restate your last explanation using simpler terms?'</li><li>'Could you restate the impact of augmented reality on design practices?'</li><li>'Pourriez-vous me donner un résumé des principaux points abordés dans notre conversation précédente ?'</li></ul> |
72
+ | compare | <ul><li>'How do the conclusions differ?'</li><li>'Contrast the main arguments presented in each paper'</li><li>'Quelles sont les principales différences dans les programmes éducatifs décrits dans ces documents ?'</li></ul> |
73
+ | summary | <ul><li>'Que dois-je retenir de ce doc ?'</li><li>'What are the key assertions made within the text'</li><li>'What are the most important argument stated in the document?'</li></ul> |
74
 
75
  ## Evaluation
76
 
77
  ### Metrics
78
  | Label | Accuracy |
79
  |:--------|:---------|
80
+ | **all** | 0.9333 |
81
 
82
  ## Uses
83
 
 
129
  ### Training Set Metrics
130
  | Training set | Min | Median | Max |
131
  |:-------------|:----|:--------|:----|
132
+ | Word count | 4 | 13.4389 | 48 |
133
 
134
  | Label | Training Sample Count |
135
  |:---------|:----------------------|
 
154
  - load_best_model_at_end: True
155
 
156
  ### Training Results
157
+ | Epoch | Step | Training Loss | Validation Loss |
158
+ |:-------:|:---------:|:-------------:|:---------------:|
159
+ | 0.0003 | 1 | 0.4073 | - |
160
+ | 0.0151 | 50 | 0.3054 | - |
161
+ | 0.0303 | 100 | 0.2066 | - |
162
+ | 0.0454 | 150 | 0.2664 | - |
163
+ | 0.0606 | 200 | 0.2463 | - |
164
+ | 0.0757 | 250 | 0.214 | - |
165
+ | 0.0909 | 300 | 0.1892 | - |
166
+ | 0.1060 | 350 | 0.1402 | - |
167
+ | 0.1212 | 400 | 0.1804 | - |
168
+ | 0.1363 | 450 | 0.0571 | - |
169
+ | 0.1515 | 500 | 0.0979 | - |
170
+ | 0.1666 | 550 | 0.1775 | - |
171
+ | 0.1818 | 600 | 0.0377 | - |
172
+ | 0.1969 | 650 | 0.0398 | - |
173
+ | 0.2121 | 700 | 0.0423 | - |
174
+ | 0.2272 | 750 | 0.0036 | - |
175
+ | 0.2424 | 800 | 0.0079 | - |
176
+ | 0.2575 | 850 | 0.0049 | - |
177
+ | 0.2726 | 900 | 0.0018 | - |
178
+ | 0.2878 | 950 | 0.0018 | - |
179
+ | 0.3029 | 1000 | 0.0032 | - |
180
+ | 0.3181 | 1050 | 0.0019 | - |
181
+ | 0.3332 | 1100 | 0.0008 | - |
182
+ | 0.3484 | 1150 | 0.0006 | - |
183
+ | 0.3635 | 1200 | 0.0006 | - |
184
+ | 0.3787 | 1250 | 0.0011 | - |
185
+ | 0.3938 | 1300 | 0.0005 | - |
186
+ | 0.4090 | 1350 | 0.001 | - |
187
+ | 0.4241 | 1400 | 0.0009 | - |
188
+ | 0.4393 | 1450 | 0.0004 | - |
189
+ | 0.4544 | 1500 | 0.0003 | - |
190
+ | 0.4696 | 1550 | 0.0003 | - |
191
+ | 0.4847 | 1600 | 0.0006 | - |
192
+ | 0.4998 | 1650 | 0.0003 | - |
193
+ | 0.5150 | 1700 | 0.0002 | - |
194
+ | 0.5301 | 1750 | 0.0002 | - |
195
+ | 0.5453 | 1800 | 0.0005 | - |
196
+ | 0.5604 | 1850 | 0.0003 | - |
197
+ | 0.5756 | 1900 | 0.0002 | - |
198
+ | 0.5907 | 1950 | 0.0002 | - |
199
+ | 0.6059 | 2000 | 0.0001 | - |
200
+ | 0.6210 | 2050 | 0.0002 | - |
201
+ | 0.6362 | 2100 | 0.0002 | - |
202
+ | 0.6513 | 2150 | 0.0001 | - |
203
+ | 0.6665 | 2200 | 0.0002 | - |
204
+ | 0.6816 | 2250 | 0.0002 | - |
205
+ | 0.6968 | 2300 | 0.0002 | - |
206
+ | 0.7119 | 2350 | 0.0002 | - |
207
+ | 0.7271 | 2400 | 0.0002 | - |
208
+ | 0.7422 | 2450 | 0.0002 | - |
209
+ | 0.7573 | 2500 | 0.0001 | - |
210
+ | 0.7725 | 2550 | 0.0001 | - |
211
+ | 0.7876 | 2600 | 0.0002 | - |
212
+ | 0.8028 | 2650 | 0.0001 | - |
213
+ | 0.8179 | 2700 | 0.0002 | - |
214
+ | 0.8331 | 2750 | 0.0007 | - |
215
+ | 0.8482 | 2800 | 0.0001 | - |
216
+ | 0.8634 | 2850 | 0.0001 | - |
217
+ | 0.8785 | 2900 | 0.0001 | - |
218
+ | 0.8937 | 2950 | 0.0001 | - |
219
+ | 0.9088 | 3000 | 0.0001 | - |
220
+ | 0.9240 | 3050 | 0.0002 | - |
221
+ | 0.9391 | 3100 | 0.0001 | - |
222
+ | 0.9543 | 3150 | 0.0001 | - |
223
+ | 0.9694 | 3200 | 0.0001 | - |
224
+ | 0.9846 | 3250 | 0.0001 | - |
225
+ | 0.9997 | 3300 | 0.0002 | - |
226
+ | 1.0 | 3301 | - | 0.0001 |
227
+ | 1.0148 | 3350 | 0.0003 | - |
228
+ | 1.0300 | 3400 | 0.0002 | - |
229
+ | 1.0451 | 3450 | 0.0001 | - |
230
+ | 1.0603 | 3500 | 0.0001 | - |
231
+ | 1.0754 | 3550 | 0.0001 | - |
232
+ | 1.0906 | 3600 | 0.0001 | - |
233
+ | 1.1057 | 3650 | 0.0001 | - |
234
+ | 1.1209 | 3700 | 0.0002 | - |
235
+ | 1.1360 | 3750 | 0.0001 | - |
236
+ | 1.1512 | 3800 | 0.0001 | - |
237
+ | 1.1663 | 3850 | 0.0001 | - |
238
+ | 1.1815 | 3900 | 0.0001 | - |
239
+ | 1.1966 | 3950 | 0.001 | - |
240
+ | 1.2118 | 4000 | 0.0001 | - |
241
+ | 1.2269 | 4050 | 0.0001 | - |
242
+ | 1.2420 | 4100 | 0.0001 | - |
243
+ | 1.2572 | 4150 | 0.0001 | - |
244
+ | 1.2723 | 4200 | 0.0001 | - |
245
+ | 1.2875 | 4250 | 0.0001 | - |
246
+ | 1.3026 | 4300 | 0.0001 | - |
247
+ | 1.3178 | 4350 | 0.0 | - |
248
+ | 1.3329 | 4400 | 0.0001 | - |
249
+ | 1.3481 | 4450 | 0.0001 | - |
250
+ | 1.3632 | 4500 | 0.0001 | - |
251
+ | 1.3784 | 4550 | 0.0001 | - |
252
+ | 1.3935 | 4600 | 0.0001 | - |
253
+ | 1.4087 | 4650 | 0.0001 | - |
254
+ | 1.4238 | 4700 | 0.0001 | - |
255
+ | 1.4390 | 4750 | 0.0001 | - |
256
+ | 1.4541 | 4800 | 0.0 | - |
257
+ | 1.4693 | 4850 | 0.0 | - |
258
+ | 1.4844 | 4900 | 0.0001 | - |
259
+ | 1.4995 | 4950 | 0.0001 | - |
260
+ | 1.5147 | 5000 | 0.0001 | - |
261
+ | 1.5298 | 5050 | 0.0001 | - |
262
+ | 1.5450 | 5100 | 0.0 | - |
263
+ | 1.5601 | 5150 | 0.0001 | - |
264
+ | 1.5753 | 5200 | 0.0 | - |
265
+ | 1.5904 | 5250 | 0.0 | - |
266
+ | 1.6056 | 5300 | 0.0001 | - |
267
+ | 1.6207 | 5350 | 0.0 | - |
268
+ | 1.6359 | 5400 | 0.0001 | - |
269
+ | 1.6510 | 5450 | 0.0 | - |
270
+ | 1.6662 | 5500 | 0.0001 | - |
271
+ | 1.6813 | 5550 | 0.0001 | - |
272
+ | 1.6965 | 5600 | 0.0 | - |
273
+ | 1.7116 | 5650 | 0.0 | - |
274
+ | 1.7267 | 5700 | 0.0 | - |
275
+ | 1.7419 | 5750 | 0.0001 | - |
276
+ | 1.7570 | 5800 | 0.0001 | - |
277
+ | 1.7722 | 5850 | 0.0 | - |
278
+ | 1.7873 | 5900 | 0.0 | - |
279
+ | 1.8025 | 5950 | 0.0001 | - |
280
+ | 1.8176 | 6000 | 0.0002 | - |
281
+ | 1.8328 | 6050 | 0.0 | - |
282
+ | 1.8479 | 6100 | 0.0001 | - |
283
+ | 1.8631 | 6150 | 0.0001 | - |
284
+ | 1.8782 | 6200 | 0.0001 | - |
285
+ | 1.8934 | 6250 | 0.0 | - |
286
+ | 1.9085 | 6300 | 0.0001 | - |
287
+ | 1.9237 | 6350 | 0.0 | - |
288
+ | 1.9388 | 6400 | 0.0001 | - |
289
+ | 1.9540 | 6450 | 0.0001 | - |
290
+ | 1.9691 | 6500 | 0.0 | - |
291
+ | 1.9842 | 6550 | 0.0 | - |
292
+ | 1.9994 | 6600 | 0.0 | - |
293
+ | 2.0 | 6602 | - | 0.0 |
294
+ | 2.0145 | 6650 | 0.0 | - |
295
+ | 2.0297 | 6700 | 0.0 | - |
296
+ | 2.0448 | 6750 | 0.0 | - |
297
+ | 2.0600 | 6800 | 0.0 | - |
298
+ | 2.0751 | 6850 | 0.0 | - |
299
+ | 2.0903 | 6900 | 0.0001 | - |
300
+ | 2.1054 | 6950 | 0.0 | - |
301
+ | 2.1206 | 7000 | 0.0 | - |
302
+ | 2.1357 | 7050 | 0.0 | - |
303
+ | 2.1509 | 7100 | 0.0001 | - |
304
+ | 2.1660 | 7150 | 0.0 | - |
305
+ | 2.1812 | 7200 | 0.0 | - |
306
+ | 2.1963 | 7250 | 0.0 | - |
307
+ | 2.2115 | 7300 | 0.0 | - |
308
+ | 2.2266 | 7350 | 0.0001 | - |
309
+ | 2.2417 | 7400 | 0.0 | - |
310
+ | 2.2569 | 7450 | 0.0 | - |
311
+ | 2.2720 | 7500 | 0.0001 | - |
312
+ | 2.2872 | 7550 | 0.0001 | - |
313
+ | 2.3023 | 7600 | 0.0 | - |
314
+ | 2.3175 | 7650 | 0.0 | - |
315
+ | 2.3326 | 7700 | 0.0 | - |
316
+ | 2.3478 | 7750 | 0.0 | - |
317
+ | 2.3629 | 7800 | 0.0 | - |
318
+ | 2.3781 | 7850 | 0.0 | - |
319
+ | 2.3932 | 7900 | 0.0 | - |
320
+ | 2.4084 | 7950 | 0.0 | - |
321
+ | 2.4235 | 8000 | 0.0 | - |
322
+ | 2.4387 | 8050 | 0.0 | - |
323
+ | 2.4538 | 8100 | 0.0001 | - |
324
+ | 2.4689 | 8150 | 0.0 | - |
325
+ | 2.4841 | 8200 | 0.0001 | - |
326
+ | 2.4992 | 8250 | 0.0 | - |
327
+ | 2.5144 | 8300 | 0.0 | - |
328
+ | 2.5295 | 8350 | 0.0001 | - |
329
+ | 2.5447 | 8400 | 0.0 | - |
330
+ | 2.5598 | 8450 | 0.0 | - |
331
+ | 2.5750 | 8500 | 0.0 | - |
332
+ | 2.5901 | 8550 | 0.0001 | - |
333
+ | 2.6053 | 8600 | 0.0001 | - |
334
+ | 2.6204 | 8650 | 0.0 | - |
335
+ | 2.6356 | 8700 | 0.0 | - |
336
+ | 2.6507 | 8750 | 0.0 | - |
337
+ | 2.6659 | 8800 | 0.0 | - |
338
+ | 2.6810 | 8850 | 0.0 | - |
339
+ | 2.6962 | 8900 | 0.0 | - |
340
+ | 2.7113 | 8950 | 0.0 | - |
341
+ | 2.7264 | 9000 | 0.0 | - |
342
+ | 2.7416 | 9050 | 0.0001 | - |
343
+ | 2.7567 | 9100 | 0.0001 | - |
344
+ | 2.7719 | 9150 | 0.0 | - |
345
+ | 2.7870 | 9200 | 0.0001 | - |
346
+ | 2.8022 | 9250 | 0.0 | - |
347
+ | 2.8173 | 9300 | 0.0 | - |
348
+ | 2.8325 | 9350 | 0.0 | - |
349
+ | 2.8476 | 9400 | 0.0 | - |
350
+ | 2.8628 | 9450 | 0.0 | - |
351
+ | 2.8779 | 9500 | 0.0 | - |
352
+ | 2.8931 | 9550 | 0.0 | - |
353
+ | 2.9082 | 9600 | 0.0 | - |
354
+ | 2.9234 | 9650 | 0.0 | - |
355
+ | 2.9385 | 9700 | 0.0 | - |
356
+ | 2.9537 | 9750 | 0.0 | - |
357
+ | 2.9688 | 9800 | 0.0 | - |
358
+ | 2.9839 | 9850 | 0.0 | - |
359
+ | 2.9991 | 9900 | 0.0 | - |
360
+ | 3.0 | 9903 | - | 0.0 |
361
+ | 3.0142 | 9950 | 0.0 | - |
362
+ | 3.0294 | 10000 | 0.0 | - |
363
+ | 3.0445 | 10050 | 0.0 | - |
364
+ | 3.0597 | 10100 | 0.0 | - |
365
+ | 3.0748 | 10150 | 0.0 | - |
366
+ | 3.0900 | 10200 | 0.0 | - |
367
+ | 3.1051 | 10250 | 0.0001 | - |
368
+ | 3.1203 | 10300 | 0.0001 | - |
369
+ | 3.1354 | 10350 | 0.0 | - |
370
+ | 3.1506 | 10400 | 0.0 | - |
371
+ | 3.1657 | 10450 | 0.0 | - |
372
+ | 3.1809 | 10500 | 0.0 | - |
373
+ | 3.1960 | 10550 | 0.0 | - |
374
+ | 3.2111 | 10600 | 0.0 | - |
375
+ | 3.2263 | 10650 | 0.0 | - |
376
+ | 3.2414 | 10700 | 0.0 | - |
377
+ | 3.2566 | 10750 | 0.0 | - |
378
+ | 3.2717 | 10800 | 0.0 | - |
379
+ | 3.2869 | 10850 | 0.0 | - |
380
+ | 3.3020 | 10900 | 0.0 | - |
381
+ | 3.3172 | 10950 | 0.0 | - |
382
+ | 3.3323 | 11000 | 0.0 | - |
383
+ | 3.3475 | 11050 | 0.0 | - |
384
+ | 3.3626 | 11100 | 0.0 | - |
385
+ | 3.3778 | 11150 | 0.0 | - |
386
+ | 3.3929 | 11200 | 0.0 | - |
387
+ | 3.4081 | 11250 | 0.0001 | - |
388
+ | 3.4232 | 11300 | 0.0 | - |
389
+ | 3.4384 | 11350 | 0.0 | - |
390
+ | 3.4535 | 11400 | 0.0 | - |
391
+ | 3.4686 | 11450 | 0.0 | - |
392
+ | 3.4838 | 11500 | 0.0 | - |
393
+ | 3.4989 | 11550 | 0.0 | - |
394
+ | 3.5141 | 11600 | 0.0 | - |
395
+ | 3.5292 | 11650 | 0.0 | - |
396
+ | 3.5444 | 11700 | 0.0 | - |
397
+ | 3.5595 | 11750 | 0.0 | - |
398
+ | 3.5747 | 11800 | 0.0 | - |
399
+ | 3.5898 | 11850 | 0.0 | - |
400
+ | 3.6050 | 11900 | 0.0 | - |
401
+ | 3.6201 | 11950 | 0.0 | - |
402
+ | 3.6353 | 12000 | 0.0 | - |
403
+ | 3.6504 | 12050 | 0.0 | - |
404
+ | 3.6656 | 12100 | 0.0001 | - |
405
+ | 3.6807 | 12150 | 0.0 | - |
406
+ | 3.6958 | 12200 | 0.0 | - |
407
+ | 3.7110 | 12250 | 0.0 | - |
408
+ | 3.7261 | 12300 | 0.0 | - |
409
+ | 3.7413 | 12350 | 0.0 | - |
410
+ | 3.7564 | 12400 | 0.0 | - |
411
+ | 3.7716 | 12450 | 0.0 | - |
412
+ | 3.7867 | 12500 | 0.0 | - |
413
+ | 3.8019 | 12550 | 0.0 | - |
414
+ | 3.8170 | 12600 | 0.0 | - |
415
+ | 3.8322 | 12650 | 0.0 | - |
416
+ | 3.8473 | 12700 | 0.0 | - |
417
+ | 3.8625 | 12750 | 0.0 | - |
418
+ | 3.8776 | 12800 | 0.0 | - |
419
+ | 3.8928 | 12850 | 0.0 | - |
420
+ | 3.9079 | 12900 | 0.0 | - |
421
+ | 3.9231 | 12950 | 0.0 | - |
422
+ | 3.9382 | 13000 | 0.0 | - |
423
+ | 3.9533 | 13050 | 0.0 | - |
424
+ | 3.9685 | 13100 | 0.0 | - |
425
+ | 3.9836 | 13150 | 0.0 | - |
426
+ | 3.9988 | 13200 | 0.0 | - |
427
+ | **4.0** | **13204** | **-** | **0.0** |
428
 
429
  * The bold row denotes the saved checkpoint.
430
  ### Framework Versions
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "checkpoints/step_6578",
3
  "architectures": [
4
  "BertModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "checkpoints/step_13204",
3
  "architectures": [
4
  "BertModel"
5
  ],
config_setfit.json CHANGED
@@ -1,7 +1,7 @@
1
  {
 
2
  "labels": [
3
  "negative",
4
  "positive"
5
- ],
6
- "normalize_embeddings": false
7
  }
 
1
  {
2
+ "normalize_embeddings": false,
3
  "labels": [
4
  "negative",
5
  "positive"
6
+ ]
 
7
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:04599198421431c2dcf78a32aeca35ab0c7bc44059bf43fe0cd036255eb230d0
3
  size 133462128
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40e4cc7db0adcc18ad2ffb99b2b10140583b345bcfc9069ad9dbaac3ab83b733
3
  size 133462128
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ed908d757b1282930b7cdca8ecc4ba64665f481175290d63979d3f7c9d2ed9e2
3
  size 16559
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:878280bcf58d6869d7a31c866e31de59e398374d8008422dae0b780102ab3a97
3
  size 16559