Add SetFit model
Browse files- README.md +289 -284
- config.json +1 -1
- config_setfit.json +2 -2
- model.safetensors +1 -1
- model_head.pkl +1 -1
README.md
CHANGED
@@ -9,11 +9,15 @@ base_model: sentence-transformers/all-MiniLM-L12-v2
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
-
- text:
|
13 |
-
|
|
|
|
|
14 |
- text: Compare ces deux documents
|
15 |
-
- text:
|
16 |
-
|
|
|
|
|
17 |
pipeline_tag: text-classification
|
18 |
inference: true
|
19 |
model-index:
|
@@ -28,7 +32,7 @@ model-index:
|
|
28 |
split: test
|
29 |
metrics:
|
30 |
- type: accuracy
|
31 |
-
value: 0.
|
32 |
name: Accuracy
|
33 |
---
|
34 |
|
@@ -60,20 +64,20 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
60 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
|
62 |
### Model Labels
|
63 |
-
| Label | Examples
|
64 |
-
|
65 |
-
| sub_queries | <ul><li>'
|
66 |
-
|
|
67 |
-
| exchange | <ul><li>'
|
68 |
-
|
|
69 |
-
|
|
70 |
|
71 |
## Evaluation
|
72 |
|
73 |
### Metrics
|
74 |
| Label | Accuracy |
|
75 |
|:--------|:---------|
|
76 |
-
| **all** | 0.
|
77 |
|
78 |
## Uses
|
79 |
|
@@ -125,7 +129,7 @@ preds = model("Compare ces deux documents")
|
|
125 |
### Training Set Metrics
|
126 |
| Training set | Min | Median | Max |
|
127 |
|:-------------|:----|:--------|:----|
|
128 |
-
| Word count |
|
129 |
|
130 |
| Label | Training Sample Count |
|
131 |
|:---------|:----------------------|
|
@@ -150,276 +154,277 @@ preds = model("Compare ces deux documents")
|
|
150 |
- load_best_model_at_end: True
|
151 |
|
152 |
### Training Results
|
153 |
-
| Epoch | Step
|
154 |
-
|
155 |
-
| 0.0003 | 1
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
| 0.
|
163 |
-
| 0.
|
164 |
-
| 0.
|
165 |
-
| 0.
|
166 |
-
| 0.
|
167 |
-
| 0.
|
168 |
-
| 0.
|
169 |
-
| 0.
|
170 |
-
| 0.
|
171 |
-
| 0.
|
172 |
-
| 0.
|
173 |
-
| 0.
|
174 |
-
| 0.
|
175 |
-
| 0.
|
176 |
-
| 0.
|
177 |
-
| 0.
|
178 |
-
| 0.
|
179 |
-
| 0.
|
180 |
-
| 0.
|
181 |
-
| 0.
|
182 |
-
| 0.
|
183 |
-
| 0.
|
184 |
-
| 0.
|
185 |
-
| 0.
|
186 |
-
| 0.
|
187 |
-
| 0.
|
188 |
-
| 0.
|
189 |
-
| 0.
|
190 |
-
| 0.
|
191 |
-
| 0.
|
192 |
-
| 0.
|
193 |
-
| 0.
|
194 |
-
| 0.
|
195 |
-
| 0.
|
196 |
-
| 0.
|
197 |
-
| 0.
|
198 |
-
| 0.
|
199 |
-
| 0.
|
200 |
-
| 0.
|
201 |
-
| 0.
|
202 |
-
| 0.
|
203 |
-
| 0.
|
204 |
-
| 0.
|
205 |
-
| 0.
|
206 |
-
| 0.
|
207 |
-
| 0.
|
208 |
-
| 0.
|
209 |
-
| 0.
|
210 |
-
| 0.
|
211 |
-
| 0.
|
212 |
-
| 0.
|
213 |
-
| 0.
|
214 |
-
| 0.
|
215 |
-
| 0.
|
216 |
-
| 0.
|
217 |
-
| 0.
|
218 |
-
| 0.
|
219 |
-
| 0.
|
220 |
-
| 0.
|
221 |
-
|
|
222 |
-
| 1.
|
223 |
-
| 1.
|
224 |
-
| 1.
|
225 |
-
| 1.
|
226 |
-
| 1.
|
227 |
-
| 1.
|
228 |
-
| 1.
|
229 |
-
| 1.
|
230 |
-
| 1.
|
231 |
-
| 1.
|
232 |
-
| 1.
|
233 |
-
| 1.
|
234 |
-
| 1.
|
235 |
-
| 1.
|
236 |
-
| 1.
|
237 |
-
| 1.
|
238 |
-
| 1.
|
239 |
-
| 1.
|
240 |
-
| 1.
|
241 |
-
| 1.
|
242 |
-
| 1.
|
243 |
-
| 1.
|
244 |
-
| 1.
|
245 |
-
| 1.
|
246 |
-
| 1.
|
247 |
-
| 1.
|
248 |
-
| 1.
|
249 |
-
| 1.
|
250 |
-
| 1.
|
251 |
-
| 1.
|
252 |
-
| 1.
|
253 |
-
| 1.
|
254 |
-
| 1.
|
255 |
-
| 1.
|
256 |
-
| 1.
|
257 |
-
| 1.
|
258 |
-
| 1.
|
259 |
-
| 1.
|
260 |
-
| 1.
|
261 |
-
| 1.
|
262 |
-
| 1.
|
263 |
-
| 1.
|
264 |
-
| 1.
|
265 |
-
| 1.
|
266 |
-
| 1.
|
267 |
-
| 1.
|
268 |
-
| 1.
|
269 |
-
| 1.
|
270 |
-
| 1.
|
271 |
-
| 1.
|
272 |
-
| 1.
|
273 |
-
| 1.
|
274 |
-
| 1.
|
275 |
-
| 1.
|
276 |
-
| 1.
|
277 |
-
| 1.
|
278 |
-
| 1.
|
279 |
-
| 1.
|
280 |
-
| 1.
|
281 |
-
| 1.
|
282 |
-
| 1.
|
283 |
-
| 1.
|
284 |
-
| 1.
|
285 |
-
| 1.
|
286 |
-
| 1.
|
287 |
-
| 1.
|
288 |
-
|
|
289 |
-
| 2.
|
290 |
-
| 2.
|
291 |
-
| 2.
|
292 |
-
| 2.
|
293 |
-
| 2.
|
294 |
-
| 2.
|
295 |
-
| 2.
|
296 |
-
| 2.
|
297 |
-
| 2.
|
298 |
-
| 2.
|
299 |
-
| 2.
|
300 |
-
| 2.
|
301 |
-
| 2.
|
302 |
-
| 2.
|
303 |
-
| 2.
|
304 |
-
| 2.
|
305 |
-
| 2.
|
306 |
-
| 2.
|
307 |
-
| 2.
|
308 |
-
| 2.
|
309 |
-
| 2.
|
310 |
-
| 2.
|
311 |
-
| 2.
|
312 |
-
| 2.
|
313 |
-
| 2.
|
314 |
-
| 2.
|
315 |
-
| 2.
|
316 |
-
| 2.
|
317 |
-
| 2.
|
318 |
-
| 2.
|
319 |
-
| 2.
|
320 |
-
| 2.
|
321 |
-
| 2.
|
322 |
-
| 2.
|
323 |
-
| 2.
|
324 |
-
| 2.
|
325 |
-
| 2.
|
326 |
-
| 2.
|
327 |
-
| 2.
|
328 |
-
| 2.
|
329 |
-
| 2.
|
330 |
-
| 2.
|
331 |
-
| 2.
|
332 |
-
| 2.
|
333 |
-
| 2.
|
334 |
-
| 2.
|
335 |
-
| 2.
|
336 |
-
| 2.
|
337 |
-
| 2.
|
338 |
-
| 2.
|
339 |
-
| 2.
|
340 |
-
| 2.
|
341 |
-
| 2.
|
342 |
-
| 2.
|
343 |
-
| 2.
|
344 |
-
| 2.
|
345 |
-
| 2.
|
346 |
-
| 2.
|
347 |
-
| 2.
|
348 |
-
| 2.
|
349 |
-
| 2.
|
350 |
-
| 2.
|
351 |
-
| 2.
|
352 |
-
| 2.
|
353 |
-
| 2.
|
354 |
-
| 2.
|
355 |
-
|
|
356 |
-
| 3.
|
357 |
-
| 3.
|
358 |
-
| 3.
|
359 |
-
| 3.
|
360 |
-
| 3.
|
361 |
-
| 3.
|
362 |
-
| 3.
|
363 |
-
| 3.
|
364 |
-
| 3.
|
365 |
-
| 3.
|
366 |
-
| 3.
|
367 |
-
| 3.
|
368 |
-
| 3.
|
369 |
-
| 3.
|
370 |
-
| 3.
|
371 |
-
| 3.
|
372 |
-
| 3.
|
373 |
-
| 3.
|
374 |
-
| 3.
|
375 |
-
| 3.
|
376 |
-
| 3.
|
377 |
-
| 3.
|
378 |
-
| 3.
|
379 |
-
| 3.
|
380 |
-
| 3.
|
381 |
-
| 3.
|
382 |
-
| 3.
|
383 |
-
| 3.
|
384 |
-
| 3.
|
385 |
-
| 3.
|
386 |
-
| 3.
|
387 |
-
| 3.
|
388 |
-
| 3.
|
389 |
-
| 3.
|
390 |
-
| 3.
|
391 |
-
| 3.
|
392 |
-
| 3.
|
393 |
-
| 3.
|
394 |
-
| 3.
|
395 |
-
| 3.
|
396 |
-
| 3.
|
397 |
-
| 3.
|
398 |
-
| 3.
|
399 |
-
| 3.
|
400 |
-
| 3.
|
401 |
-
| 3.
|
402 |
-
| 3.
|
403 |
-
| 3.
|
404 |
-
| 3.
|
405 |
-
| 3.
|
406 |
-
| 3.
|
407 |
-
| 3.
|
408 |
-
| 3.
|
409 |
-
| 3.
|
410 |
-
| 3.
|
411 |
-
| 3.
|
412 |
-
| 3.
|
413 |
-
| 3.
|
414 |
-
| 3.
|
415 |
-
| 3.
|
416 |
-
| 3.
|
417 |
-
| 3.
|
418 |
-
| 3.
|
419 |
-
| 3.
|
420 |
-
| 3.
|
421 |
-
| 3.
|
422 |
-
|
|
|
|
423 |
|
424 |
* The bold row denotes the saved checkpoint.
|
425 |
### Framework Versions
|
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
+
- text: Quel est le principal litige dans les projets de construction, et quel droit
|
13 |
+
de la partie accusee
|
14 |
+
- text: Clarifier quels sont les facteurs déterminants dans le choix d'un emplacement
|
15 |
+
pour un nouveau magasin
|
16 |
- text: Compare ces deux documents
|
17 |
+
- text: Can you explain the process of wind energy generation and discuss its environmental
|
18 |
+
impacts compared to those of hydroelectric power?
|
19 |
+
- text: Could you restate the advantages of using project management software that
|
20 |
+
were mentioned earlier? Provide a linkedin post about it
|
21 |
pipeline_tag: text-classification
|
22 |
inference: true
|
23 |
model-index:
|
|
|
32 |
split: test
|
33 |
metrics:
|
34 |
- type: accuracy
|
35 |
+
value: 0.9333333333333333
|
36 |
name: Accuracy
|
37 |
---
|
38 |
|
|
|
64 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
65 |
|
66 |
### Model Labels
|
67 |
+
| Label | Examples |
|
68 |
+
|:-----------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
69 |
+
| sub_queries | <ul><li>'Could you break down the main factors I should consider when researching market prices and how to effectively communicate our needs to the supplier during negotiations?'</li><li>'Comment faire pousser une plante et le mesurer ?'</li><li>"Quel est le meilleur matériau pour l'isolation phonique et thermique?"</li></ul> |
|
70 |
+
| simple_questions | <ul><li>'What are the key strategies for maintaining efficient communication in a remote work environment?'</li><li>'Could you summarize the ways a person can help in adapting to climate change ?'</li><li>'What are the current trends in construction?'</li></ul> |
|
71 |
+
| exchange | <ul><li>'Could you please restate your last explanation using simpler terms?'</li><li>'Could you restate the impact of augmented reality on design practices?'</li><li>'Pourriez-vous me donner un résumé des principaux points abordés dans notre conversation précédente ?'</li></ul> |
|
72 |
+
| compare | <ul><li>'How do the conclusions differ?'</li><li>'Contrast the main arguments presented in each paper'</li><li>'Quelles sont les principales différences dans les programmes éducatifs décrits dans ces documents ?'</li></ul> |
|
73 |
+
| summary | <ul><li>'Que dois-je retenir de ce doc ?'</li><li>'What are the key assertions made within the text'</li><li>'What are the most important argument stated in the document?'</li></ul> |
|
74 |
|
75 |
## Evaluation
|
76 |
|
77 |
### Metrics
|
78 |
| Label | Accuracy |
|
79 |
|:--------|:---------|
|
80 |
+
| **all** | 0.9333 |
|
81 |
|
82 |
## Uses
|
83 |
|
|
|
129 |
### Training Set Metrics
|
130 |
| Training set | Min | Median | Max |
|
131 |
|:-------------|:----|:--------|:----|
|
132 |
+
| Word count | 4 | 13.4389 | 48 |
|
133 |
|
134 |
| Label | Training Sample Count |
|
135 |
|:---------|:----------------------|
|
|
|
154 |
- load_best_model_at_end: True
|
155 |
|
156 |
### Training Results
|
157 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
158 |
+
|:-------:|:---------:|:-------------:|:---------------:|
|
159 |
+
| 0.0003 | 1 | 0.4073 | - |
|
160 |
+
| 0.0151 | 50 | 0.3054 | - |
|
161 |
+
| 0.0303 | 100 | 0.2066 | - |
|
162 |
+
| 0.0454 | 150 | 0.2664 | - |
|
163 |
+
| 0.0606 | 200 | 0.2463 | - |
|
164 |
+
| 0.0757 | 250 | 0.214 | - |
|
165 |
+
| 0.0909 | 300 | 0.1892 | - |
|
166 |
+
| 0.1060 | 350 | 0.1402 | - |
|
167 |
+
| 0.1212 | 400 | 0.1804 | - |
|
168 |
+
| 0.1363 | 450 | 0.0571 | - |
|
169 |
+
| 0.1515 | 500 | 0.0979 | - |
|
170 |
+
| 0.1666 | 550 | 0.1775 | - |
|
171 |
+
| 0.1818 | 600 | 0.0377 | - |
|
172 |
+
| 0.1969 | 650 | 0.0398 | - |
|
173 |
+
| 0.2121 | 700 | 0.0423 | - |
|
174 |
+
| 0.2272 | 750 | 0.0036 | - |
|
175 |
+
| 0.2424 | 800 | 0.0079 | - |
|
176 |
+
| 0.2575 | 850 | 0.0049 | - |
|
177 |
+
| 0.2726 | 900 | 0.0018 | - |
|
178 |
+
| 0.2878 | 950 | 0.0018 | - |
|
179 |
+
| 0.3029 | 1000 | 0.0032 | - |
|
180 |
+
| 0.3181 | 1050 | 0.0019 | - |
|
181 |
+
| 0.3332 | 1100 | 0.0008 | - |
|
182 |
+
| 0.3484 | 1150 | 0.0006 | - |
|
183 |
+
| 0.3635 | 1200 | 0.0006 | - |
|
184 |
+
| 0.3787 | 1250 | 0.0011 | - |
|
185 |
+
| 0.3938 | 1300 | 0.0005 | - |
|
186 |
+
| 0.4090 | 1350 | 0.001 | - |
|
187 |
+
| 0.4241 | 1400 | 0.0009 | - |
|
188 |
+
| 0.4393 | 1450 | 0.0004 | - |
|
189 |
+
| 0.4544 | 1500 | 0.0003 | - |
|
190 |
+
| 0.4696 | 1550 | 0.0003 | - |
|
191 |
+
| 0.4847 | 1600 | 0.0006 | - |
|
192 |
+
| 0.4998 | 1650 | 0.0003 | - |
|
193 |
+
| 0.5150 | 1700 | 0.0002 | - |
|
194 |
+
| 0.5301 | 1750 | 0.0002 | - |
|
195 |
+
| 0.5453 | 1800 | 0.0005 | - |
|
196 |
+
| 0.5604 | 1850 | 0.0003 | - |
|
197 |
+
| 0.5756 | 1900 | 0.0002 | - |
|
198 |
+
| 0.5907 | 1950 | 0.0002 | - |
|
199 |
+
| 0.6059 | 2000 | 0.0001 | - |
|
200 |
+
| 0.6210 | 2050 | 0.0002 | - |
|
201 |
+
| 0.6362 | 2100 | 0.0002 | - |
|
202 |
+
| 0.6513 | 2150 | 0.0001 | - |
|
203 |
+
| 0.6665 | 2200 | 0.0002 | - |
|
204 |
+
| 0.6816 | 2250 | 0.0002 | - |
|
205 |
+
| 0.6968 | 2300 | 0.0002 | - |
|
206 |
+
| 0.7119 | 2350 | 0.0002 | - |
|
207 |
+
| 0.7271 | 2400 | 0.0002 | - |
|
208 |
+
| 0.7422 | 2450 | 0.0002 | - |
|
209 |
+
| 0.7573 | 2500 | 0.0001 | - |
|
210 |
+
| 0.7725 | 2550 | 0.0001 | - |
|
211 |
+
| 0.7876 | 2600 | 0.0002 | - |
|
212 |
+
| 0.8028 | 2650 | 0.0001 | - |
|
213 |
+
| 0.8179 | 2700 | 0.0002 | - |
|
214 |
+
| 0.8331 | 2750 | 0.0007 | - |
|
215 |
+
| 0.8482 | 2800 | 0.0001 | - |
|
216 |
+
| 0.8634 | 2850 | 0.0001 | - |
|
217 |
+
| 0.8785 | 2900 | 0.0001 | - |
|
218 |
+
| 0.8937 | 2950 | 0.0001 | - |
|
219 |
+
| 0.9088 | 3000 | 0.0001 | - |
|
220 |
+
| 0.9240 | 3050 | 0.0002 | - |
|
221 |
+
| 0.9391 | 3100 | 0.0001 | - |
|
222 |
+
| 0.9543 | 3150 | 0.0001 | - |
|
223 |
+
| 0.9694 | 3200 | 0.0001 | - |
|
224 |
+
| 0.9846 | 3250 | 0.0001 | - |
|
225 |
+
| 0.9997 | 3300 | 0.0002 | - |
|
226 |
+
| 1.0 | 3301 | - | 0.0001 |
|
227 |
+
| 1.0148 | 3350 | 0.0003 | - |
|
228 |
+
| 1.0300 | 3400 | 0.0002 | - |
|
229 |
+
| 1.0451 | 3450 | 0.0001 | - |
|
230 |
+
| 1.0603 | 3500 | 0.0001 | - |
|
231 |
+
| 1.0754 | 3550 | 0.0001 | - |
|
232 |
+
| 1.0906 | 3600 | 0.0001 | - |
|
233 |
+
| 1.1057 | 3650 | 0.0001 | - |
|
234 |
+
| 1.1209 | 3700 | 0.0002 | - |
|
235 |
+
| 1.1360 | 3750 | 0.0001 | - |
|
236 |
+
| 1.1512 | 3800 | 0.0001 | - |
|
237 |
+
| 1.1663 | 3850 | 0.0001 | - |
|
238 |
+
| 1.1815 | 3900 | 0.0001 | - |
|
239 |
+
| 1.1966 | 3950 | 0.001 | - |
|
240 |
+
| 1.2118 | 4000 | 0.0001 | - |
|
241 |
+
| 1.2269 | 4050 | 0.0001 | - |
|
242 |
+
| 1.2420 | 4100 | 0.0001 | - |
|
243 |
+
| 1.2572 | 4150 | 0.0001 | - |
|
244 |
+
| 1.2723 | 4200 | 0.0001 | - |
|
245 |
+
| 1.2875 | 4250 | 0.0001 | - |
|
246 |
+
| 1.3026 | 4300 | 0.0001 | - |
|
247 |
+
| 1.3178 | 4350 | 0.0 | - |
|
248 |
+
| 1.3329 | 4400 | 0.0001 | - |
|
249 |
+
| 1.3481 | 4450 | 0.0001 | - |
|
250 |
+
| 1.3632 | 4500 | 0.0001 | - |
|
251 |
+
| 1.3784 | 4550 | 0.0001 | - |
|
252 |
+
| 1.3935 | 4600 | 0.0001 | - |
|
253 |
+
| 1.4087 | 4650 | 0.0001 | - |
|
254 |
+
| 1.4238 | 4700 | 0.0001 | - |
|
255 |
+
| 1.4390 | 4750 | 0.0001 | - |
|
256 |
+
| 1.4541 | 4800 | 0.0 | - |
|
257 |
+
| 1.4693 | 4850 | 0.0 | - |
|
258 |
+
| 1.4844 | 4900 | 0.0001 | - |
|
259 |
+
| 1.4995 | 4950 | 0.0001 | - |
|
260 |
+
| 1.5147 | 5000 | 0.0001 | - |
|
261 |
+
| 1.5298 | 5050 | 0.0001 | - |
|
262 |
+
| 1.5450 | 5100 | 0.0 | - |
|
263 |
+
| 1.5601 | 5150 | 0.0001 | - |
|
264 |
+
| 1.5753 | 5200 | 0.0 | - |
|
265 |
+
| 1.5904 | 5250 | 0.0 | - |
|
266 |
+
| 1.6056 | 5300 | 0.0001 | - |
|
267 |
+
| 1.6207 | 5350 | 0.0 | - |
|
268 |
+
| 1.6359 | 5400 | 0.0001 | - |
|
269 |
+
| 1.6510 | 5450 | 0.0 | - |
|
270 |
+
| 1.6662 | 5500 | 0.0001 | - |
|
271 |
+
| 1.6813 | 5550 | 0.0001 | - |
|
272 |
+
| 1.6965 | 5600 | 0.0 | - |
|
273 |
+
| 1.7116 | 5650 | 0.0 | - |
|
274 |
+
| 1.7267 | 5700 | 0.0 | - |
|
275 |
+
| 1.7419 | 5750 | 0.0001 | - |
|
276 |
+
| 1.7570 | 5800 | 0.0001 | - |
|
277 |
+
| 1.7722 | 5850 | 0.0 | - |
|
278 |
+
| 1.7873 | 5900 | 0.0 | - |
|
279 |
+
| 1.8025 | 5950 | 0.0001 | - |
|
280 |
+
| 1.8176 | 6000 | 0.0002 | - |
|
281 |
+
| 1.8328 | 6050 | 0.0 | - |
|
282 |
+
| 1.8479 | 6100 | 0.0001 | - |
|
283 |
+
| 1.8631 | 6150 | 0.0001 | - |
|
284 |
+
| 1.8782 | 6200 | 0.0001 | - |
|
285 |
+
| 1.8934 | 6250 | 0.0 | - |
|
286 |
+
| 1.9085 | 6300 | 0.0001 | - |
|
287 |
+
| 1.9237 | 6350 | 0.0 | - |
|
288 |
+
| 1.9388 | 6400 | 0.0001 | - |
|
289 |
+
| 1.9540 | 6450 | 0.0001 | - |
|
290 |
+
| 1.9691 | 6500 | 0.0 | - |
|
291 |
+
| 1.9842 | 6550 | 0.0 | - |
|
292 |
+
| 1.9994 | 6600 | 0.0 | - |
|
293 |
+
| 2.0 | 6602 | - | 0.0 |
|
294 |
+
| 2.0145 | 6650 | 0.0 | - |
|
295 |
+
| 2.0297 | 6700 | 0.0 | - |
|
296 |
+
| 2.0448 | 6750 | 0.0 | - |
|
297 |
+
| 2.0600 | 6800 | 0.0 | - |
|
298 |
+
| 2.0751 | 6850 | 0.0 | - |
|
299 |
+
| 2.0903 | 6900 | 0.0001 | - |
|
300 |
+
| 2.1054 | 6950 | 0.0 | - |
|
301 |
+
| 2.1206 | 7000 | 0.0 | - |
|
302 |
+
| 2.1357 | 7050 | 0.0 | - |
|
303 |
+
| 2.1509 | 7100 | 0.0001 | - |
|
304 |
+
| 2.1660 | 7150 | 0.0 | - |
|
305 |
+
| 2.1812 | 7200 | 0.0 | - |
|
306 |
+
| 2.1963 | 7250 | 0.0 | - |
|
307 |
+
| 2.2115 | 7300 | 0.0 | - |
|
308 |
+
| 2.2266 | 7350 | 0.0001 | - |
|
309 |
+
| 2.2417 | 7400 | 0.0 | - |
|
310 |
+
| 2.2569 | 7450 | 0.0 | - |
|
311 |
+
| 2.2720 | 7500 | 0.0001 | - |
|
312 |
+
| 2.2872 | 7550 | 0.0001 | - |
|
313 |
+
| 2.3023 | 7600 | 0.0 | - |
|
314 |
+
| 2.3175 | 7650 | 0.0 | - |
|
315 |
+
| 2.3326 | 7700 | 0.0 | - |
|
316 |
+
| 2.3478 | 7750 | 0.0 | - |
|
317 |
+
| 2.3629 | 7800 | 0.0 | - |
|
318 |
+
| 2.3781 | 7850 | 0.0 | - |
|
319 |
+
| 2.3932 | 7900 | 0.0 | - |
|
320 |
+
| 2.4084 | 7950 | 0.0 | - |
|
321 |
+
| 2.4235 | 8000 | 0.0 | - |
|
322 |
+
| 2.4387 | 8050 | 0.0 | - |
|
323 |
+
| 2.4538 | 8100 | 0.0001 | - |
|
324 |
+
| 2.4689 | 8150 | 0.0 | - |
|
325 |
+
| 2.4841 | 8200 | 0.0001 | - |
|
326 |
+
| 2.4992 | 8250 | 0.0 | - |
|
327 |
+
| 2.5144 | 8300 | 0.0 | - |
|
328 |
+
| 2.5295 | 8350 | 0.0001 | - |
|
329 |
+
| 2.5447 | 8400 | 0.0 | - |
|
330 |
+
| 2.5598 | 8450 | 0.0 | - |
|
331 |
+
| 2.5750 | 8500 | 0.0 | - |
|
332 |
+
| 2.5901 | 8550 | 0.0001 | - |
|
333 |
+
| 2.6053 | 8600 | 0.0001 | - |
|
334 |
+
| 2.6204 | 8650 | 0.0 | - |
|
335 |
+
| 2.6356 | 8700 | 0.0 | - |
|
336 |
+
| 2.6507 | 8750 | 0.0 | - |
|
337 |
+
| 2.6659 | 8800 | 0.0 | - |
|
338 |
+
| 2.6810 | 8850 | 0.0 | - |
|
339 |
+
| 2.6962 | 8900 | 0.0 | - |
|
340 |
+
| 2.7113 | 8950 | 0.0 | - |
|
341 |
+
| 2.7264 | 9000 | 0.0 | - |
|
342 |
+
| 2.7416 | 9050 | 0.0001 | - |
|
343 |
+
| 2.7567 | 9100 | 0.0001 | - |
|
344 |
+
| 2.7719 | 9150 | 0.0 | - |
|
345 |
+
| 2.7870 | 9200 | 0.0001 | - |
|
346 |
+
| 2.8022 | 9250 | 0.0 | - |
|
347 |
+
| 2.8173 | 9300 | 0.0 | - |
|
348 |
+
| 2.8325 | 9350 | 0.0 | - |
|
349 |
+
| 2.8476 | 9400 | 0.0 | - |
|
350 |
+
| 2.8628 | 9450 | 0.0 | - |
|
351 |
+
| 2.8779 | 9500 | 0.0 | - |
|
352 |
+
| 2.8931 | 9550 | 0.0 | - |
|
353 |
+
| 2.9082 | 9600 | 0.0 | - |
|
354 |
+
| 2.9234 | 9650 | 0.0 | - |
|
355 |
+
| 2.9385 | 9700 | 0.0 | - |
|
356 |
+
| 2.9537 | 9750 | 0.0 | - |
|
357 |
+
| 2.9688 | 9800 | 0.0 | - |
|
358 |
+
| 2.9839 | 9850 | 0.0 | - |
|
359 |
+
| 2.9991 | 9900 | 0.0 | - |
|
360 |
+
| 3.0 | 9903 | - | 0.0 |
|
361 |
+
| 3.0142 | 9950 | 0.0 | - |
|
362 |
+
| 3.0294 | 10000 | 0.0 | - |
|
363 |
+
| 3.0445 | 10050 | 0.0 | - |
|
364 |
+
| 3.0597 | 10100 | 0.0 | - |
|
365 |
+
| 3.0748 | 10150 | 0.0 | - |
|
366 |
+
| 3.0900 | 10200 | 0.0 | - |
|
367 |
+
| 3.1051 | 10250 | 0.0001 | - |
|
368 |
+
| 3.1203 | 10300 | 0.0001 | - |
|
369 |
+
| 3.1354 | 10350 | 0.0 | - |
|
370 |
+
| 3.1506 | 10400 | 0.0 | - |
|
371 |
+
| 3.1657 | 10450 | 0.0 | - |
|
372 |
+
| 3.1809 | 10500 | 0.0 | - |
|
373 |
+
| 3.1960 | 10550 | 0.0 | - |
|
374 |
+
| 3.2111 | 10600 | 0.0 | - |
|
375 |
+
| 3.2263 | 10650 | 0.0 | - |
|
376 |
+
| 3.2414 | 10700 | 0.0 | - |
|
377 |
+
| 3.2566 | 10750 | 0.0 | - |
|
378 |
+
| 3.2717 | 10800 | 0.0 | - |
|
379 |
+
| 3.2869 | 10850 | 0.0 | - |
|
380 |
+
| 3.3020 | 10900 | 0.0 | - |
|
381 |
+
| 3.3172 | 10950 | 0.0 | - |
|
382 |
+
| 3.3323 | 11000 | 0.0 | - |
|
383 |
+
| 3.3475 | 11050 | 0.0 | - |
|
384 |
+
| 3.3626 | 11100 | 0.0 | - |
|
385 |
+
| 3.3778 | 11150 | 0.0 | - |
|
386 |
+
| 3.3929 | 11200 | 0.0 | - |
|
387 |
+
| 3.4081 | 11250 | 0.0001 | - |
|
388 |
+
| 3.4232 | 11300 | 0.0 | - |
|
389 |
+
| 3.4384 | 11350 | 0.0 | - |
|
390 |
+
| 3.4535 | 11400 | 0.0 | - |
|
391 |
+
| 3.4686 | 11450 | 0.0 | - |
|
392 |
+
| 3.4838 | 11500 | 0.0 | - |
|
393 |
+
| 3.4989 | 11550 | 0.0 | - |
|
394 |
+
| 3.5141 | 11600 | 0.0 | - |
|
395 |
+
| 3.5292 | 11650 | 0.0 | - |
|
396 |
+
| 3.5444 | 11700 | 0.0 | - |
|
397 |
+
| 3.5595 | 11750 | 0.0 | - |
|
398 |
+
| 3.5747 | 11800 | 0.0 | - |
|
399 |
+
| 3.5898 | 11850 | 0.0 | - |
|
400 |
+
| 3.6050 | 11900 | 0.0 | - |
|
401 |
+
| 3.6201 | 11950 | 0.0 | - |
|
402 |
+
| 3.6353 | 12000 | 0.0 | - |
|
403 |
+
| 3.6504 | 12050 | 0.0 | - |
|
404 |
+
| 3.6656 | 12100 | 0.0001 | - |
|
405 |
+
| 3.6807 | 12150 | 0.0 | - |
|
406 |
+
| 3.6958 | 12200 | 0.0 | - |
|
407 |
+
| 3.7110 | 12250 | 0.0 | - |
|
408 |
+
| 3.7261 | 12300 | 0.0 | - |
|
409 |
+
| 3.7413 | 12350 | 0.0 | - |
|
410 |
+
| 3.7564 | 12400 | 0.0 | - |
|
411 |
+
| 3.7716 | 12450 | 0.0 | - |
|
412 |
+
| 3.7867 | 12500 | 0.0 | - |
|
413 |
+
| 3.8019 | 12550 | 0.0 | - |
|
414 |
+
| 3.8170 | 12600 | 0.0 | - |
|
415 |
+
| 3.8322 | 12650 | 0.0 | - |
|
416 |
+
| 3.8473 | 12700 | 0.0 | - |
|
417 |
+
| 3.8625 | 12750 | 0.0 | - |
|
418 |
+
| 3.8776 | 12800 | 0.0 | - |
|
419 |
+
| 3.8928 | 12850 | 0.0 | - |
|
420 |
+
| 3.9079 | 12900 | 0.0 | - |
|
421 |
+
| 3.9231 | 12950 | 0.0 | - |
|
422 |
+
| 3.9382 | 13000 | 0.0 | - |
|
423 |
+
| 3.9533 | 13050 | 0.0 | - |
|
424 |
+
| 3.9685 | 13100 | 0.0 | - |
|
425 |
+
| 3.9836 | 13150 | 0.0 | - |
|
426 |
+
| 3.9988 | 13200 | 0.0 | - |
|
427 |
+
| **4.0** | **13204** | **-** | **0.0** |
|
428 |
|
429 |
* The bold row denotes the saved checkpoint.
|
430 |
### Framework Versions
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "checkpoints/
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "checkpoints/step_13204",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
config_setfit.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
|
|
2 |
"labels": [
|
3 |
"negative",
|
4 |
"positive"
|
5 |
-
]
|
6 |
-
"normalize_embeddings": false
|
7 |
}
|
|
|
1 |
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
"labels": [
|
4 |
"negative",
|
5 |
"positive"
|
6 |
+
]
|
|
|
7 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 133462128
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40e4cc7db0adcc18ad2ffb99b2b10140583b345bcfc9069ad9dbaac3ab83b733
|
3 |
size 133462128
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 16559
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:878280bcf58d6869d7a31c866e31de59e398374d8008422dae0b780102ab3a97
|
3 |
size 16559
|