File size: 12,923 Bytes
0f9b9fb
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f46eed5b640>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f46eed5b6d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f46eed5b760>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46eed5b7f0>", "_build": "<function ActorCriticPolicy._build at 0x7f46eed5b880>", "forward": "<function ActorCriticPolicy.forward at 0x7f46eed5b910>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f46eed5b9a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f46eed5ba30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f46eed5bac0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f46eed5bb50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46eed5bbe0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f46eed5bc70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f46eed5c0c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717161151979210544, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGxakSmIj4aMAWyUTcMCjAF0lEdAk+pQ4sEq2HV9lChoBkdAbKYOuJUHZGgHTXwBaAhHQJPrBefI0ZZ1fZQoaAZHQG1yH+yZ8a5oB01aA2gIR0CT7PLCemNzdX2UKGgGR0BwGbnV5KODaAdNbgFoCEdAk+7hwdbPhXV9lChoBkdAYo6Za3ZwoGgHTegDaAhHQJPy8r5IpYt1fZQoaAZHQG6cXXI2fkFoB03fAWgIR0CT9sO3UhFFdX2UKGgGR0Bt5O2LHdXUaAdNHgJoCEdAk/tHMt9QXXV9lChoBkdAcUuxcE/0NGgHTeMCaAhHQJP8zHggow51fZQoaAZHQGx+EPczqKRoB02xAWgIR0CT/p+1jRUndX2UKGgGR0BtVPetSydGaAdNzwJoCEdAlADXfuTibXV9lChoBkdAcFM9YwIt2GgHTYECaAhHQJQD66UaAFx1fZQoaAZHQHCN0csDnvFoB01bA2gIR0CUBEz5GjKxdX2UKGgGR0Bg1ZlWfbsXaAdN6ANoCEdAlAhEoKD02HV9lChoBkdAcGE+ERJ2+2gHTfQBaAhHQJQIuWt2cKB1fZQoaAZHQGr1oTfzjFRoB02HAWgIR0CUCSFev6j4dX2UKGgGR0BwWFFQVKwqaAdNLQJoCEdAlAsPKMefZnV9lChoBkdAcHXu8brC32gHTRgCaAhHQJQMCrELpiZ1fZQoaAZHQG4/y6tknTloB00DAmgIR0CUDE/d69kCdX2UKGgGR0BriMunMt9QaAdN3gJoCEdAlCKDc2zfJnV9lChoBkdAct8xY7q6fGgHTdcCaAhHQJQi2E8JUo91fZQoaAZHQGqIfbCaZx9oB03oAWgIR0CUJS150KZ2dX2UKGgGR0A7F7l7tzCDaAdL42gIR0CUKC7KJVKgdX2UKGgGR0Bwn0aXKKYRaAdN0gFoCEdAlCiYuoP07XV9lChoBkdAa9ttl7MPjGgHTekBaAhHQJQqwAJb+tN1fZQoaAZHQG5+NlI3BHloB03OAWgIR0CUKvbKRuCPdX2UKGgGR0BwX7V3EAHWaAdNuwFoCEdAlCvQ7LdN4HV9lChoBkdAMmmTLW7OFGgHTT8BaAhHQJQsrBhx5s11fZQoaAZHQGTeEsBhhH9oB03oA2gIR0CULk2f029+dX2UKGgGR0BwCtcTrVvuaAdN0AFoCEdAlC7kzoEB83V9lChoBkdAce6CJGe+VWgHTZwBaAhHQJQv3in5zo51fZQoaAZHQGy3X7DVH4JoB02GAWgIR0CUMMsMAmzCdX2UKGgGR0BvMFbxEv0zaAdNgAFoCEdAlDGFf/m1Y3V9lChoBkdAcmgxn3+MqGgHTW8BaAhHQJQy5p1zQu51fZQoaAZHQG5LiVKPGQ1oB01bAmgIR0CUM894u9OAdX2UKGgGR0BydWYjSofkaAdNyAFoCEdAlDPsasIVunV9lChoBkdAb2E5CngpB2gHTYUBaAhHQJQz7UhFEzB1fZQoaAZHQC+xPwd8zANoB01PAWgIR0CUNP9GZuyedX2UKGgGR0Bw0F5TqB3BaAdNrwFoCEdAlDa5CBwuNHV9lChoBkdAcKecBEKE4GgHTVoBaAhHQJQ31du5z5p1fZQoaAZHQG+dOh0yP+5oB01yAWgIR0CUOJiPyTY/dX2UKGgGR0BvQdstTUAlaAdNZgFoCEdAlDkcan7523V9lChoBkdAUM5C9h7VrmgHTQwBaAhHQJQ6whTwUg11fZQoaAZHQG1BKqXF98ZoB02CAWgIR0CUOx6E8JUpdX2UKGgGR0BuKVRHf/FSaAdNagFoCEdAlDvpzLfUF3V9lChoBkdAbpMEvCdjG2gHTYMBaAhHQJQ9i21D0Dl1fZQoaAZHQG7HoXj2i+NoB019AWgIR0CUQG4Z/CqIdX2UKGgGR0BxZPBwdbPhaAdNWwFoCEdAlECu+mFajnV9lChoBkdAanWhUzbeuWgHTU4BaAhHQJRBWLS/j811fZQoaAZHQHCMriADq4ZoB02AAWgIR0CURR3gDRtxdX2UKGgGR0BwvPfgrH2iaAdNVQFoCEdAlEVOymhufnV9lChoBkdAcjDjdHlOoGgHTa8BaAhHQJRFrftQbdd1fZQoaAZHQG3UYTbnHNpoB003AmgIR0CURugPEsJ6dX2UKGgGR0BN0FfZ26kJaAdL8GgIR0CUSGkDZDiPdX2UKGgGR0BxrqXa8Hv+aAdNYgFoCEdAlEh1y7wrlXV9lChoBkdAbS1HnU2DQWgHTYgBaAhHQJRibcVQAMl1fZQoaAZHQHCo9p22XsxoB02IA2gIR0CUYsCY1He8dX2UKGgGR0BuxrP+n62waAdNzgFoCEdAlGTks4DLbHV9lChoBkdAcYulYEGJN2gHTVQBaAhHQJRl9jbzshR1fZQoaAZHQG895VXFLnNoB01sAWgIR0CUZjhOP/70dX2UKGgGR0Brv0EidJ8OaAdNZwFoCEdAlGY50KZ2IXV9lChoBkdAbGqx/ustCmgHTbQCaAhHQJRmywRoRI11fZQoaAZHQHBshcAzYVZoB00yAmgIR0CUaP4nWrfcdX2UKGgGR0BvR0iY9gWraAdNWQFoCEdAlGnwYk3S8nV9lChoBkdAcHmoJzDGcWgHTXQBaAhHQJRq0Tj/+851fZQoaAZHQHG1jEBKcutoB01yAWgIR0CUazNpM6BAdX2UKGgGR0BqQmY2Kl54aAdNZQFoCEdAlGvI4+8oQXV9lChoBkdAbXADFId2gWgHTW8BaAhHQJRtpnM+u/11fZQoaAZHQHDRcwpON5toB02aAWgIR0CUb1gZjx0/dX2UKGgGR0Bv0U2m51/2aAdNUQFoCEdAlHD7oGIKt3V9lChoBkdAb1eaEzwc52gHTVQBaAhHQJRxck3S8ap1fZQoaAZHQDImMR6F/QVoB00rAWgIR0CUcy7ZWaMKdX2UKGgGR0Btt5NoJzDGaAdNVQFoCEdAlHNQBDG96HV9lChoBkdAMbFk1/DtPmgHTUkBaAhHQJRz2pKjBVN1fZQoaAZHQHGQXbqQiiZoB01XAWgIR0CUdC5jYqXodX2UKGgGR0BCa/IsAeaKaAdNcgFoCEdAlHVecMEzPHV9lChoBkdAccvYYBNmDmgHTcgDaAhHQJR3OBtk4FR1fZQoaAZHQFysvi97F85oB03oA2gIR0CUd7mDDjzadX2UKGgGR0BtOOKdhAnlaAdNgwFoCEdAlHiq8L8aXXV9lChoBkdAJ8+BQN0/4mgHTUMBaAhHQJR44yAQQMB1fZQoaAZHQDkA1YQrc0toB000AWgIR0CUegwqRU3odX2UKGgGR0BwzfySV4X5aAdNmwFoCEdAlHpVx0dRznV9lChoBkdAcDSybx3FDWgHTY0BaAhHQJR6okQf6oF1fZQoaAZHQHAKR1X/5tZoB02GAWgIR0CUery+HrQgdX2UKGgGR0Byiy7cwg1WaAdNUQFoCEdAlHxIOpbUw3V9lChoBkdAcfjnb7CSBGgHTT4BaAhHQJR87KSxJNF1fZQoaAZHQHCFsWfseGRoB01TAWgIR0CUffzNliBodX2UKGgGR0BuP6uuA7PqaAdNOAFoCEdAlH8TpX6qKnV9lChoBkdAM1mBe5WilGgHTTgBaAhHQJSAoQK8cuJ1fZQoaAZHQHJUb9ycTaloB02WAWgIR0CUgh80DU3GdX2UKGgGR0Bw+2KhtcfOaAdNoQFoCEdAlIK4Fqzqr3V9lChoBkdATOmDFqBVdWgHS+9oCEdAlILu2iL2pXV9lChoBkdAcD3OmixmkGgHTZEBaAhHQJSDG4uscQ11fZQoaAZHQG1L/PPcBU9oB01MAWgIR0CUg4a+evpydX2UKGgGR0BwgZN8E3bVaAdNQwFoCEdAlIT50KZ2IXV9lChoBkdAbVrroGIKt2gHTWQBaAhHQJSFcpazNUx1fZQoaAZHQHAMteMQ2/BoB00tAWgIR0CUhp3I+4b0dX2UKGgGR0BtXUp1A7gbaAdNeAFoCEdAlIfvbKzRhXV9lChoBkdAbYti8WbgCWgHTWsBaAhHQJSIxLwnYxt1fZQoaAZHQGzacSGrS3NoB01bAWgIR0CUiPeMAFPjdX2UKGgGR0Bs5FJlJ6IFaAdNawFoCEdAlIxIJJGvwHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}