timm
PyTorch
medical
Image Feature Extraction
File size: 3,057 Bytes
100a0c2
 
 
 
8050e5e
 
 
 
306def0
100a0c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7692a27
100a0c2
 
 
 
ec9828c
100a0c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
license: apache-2.0
tags:
- medical
- Image Feature Extraction
datasets:
- Geometryyy/Cholec80
- minwoosun/CholecSeg8k
library_name: timm
---

<!-- markdownlint-disable first-line-h1 -->
<!-- markdownlint-disable html -->

<div align="center">
<h1>
  EndoViT
</h1>
</div>

<p align="center">
<a href="https://link.springer.com/article/10.1007/s11548-024-03091-5" target="_blank">Paper</a>    <a href="https://github.com/DominikBatic/EndoViT" target="_blank">Github</a></a>
</p>

<div align="center">
</div>


##Get Started

This section provides a quick start example for using the EndoViT model.

Installation:

```python
pip install torch==2.0.1 timm==0.9.16 huggingface-hub==0.22.2
```

Extracting features from a list of images. (Can also be a good starting point for using EndoViT as backbone)

```python
import torch
import torchvision.transforms as T
from PIL import Image
from pathlib import Path
from timm.models.vision_transformer import VisionTransformer
from functools import partial
from torch import nn
from huggingface_hub import snapshot_download


def process_single_image(image_path, input_size=224, dataset_mean=[0.3464, 0.2280, 0.2228], dataset_std=[0.2520, 0.2128, 0.2093]):
    # Define the transformations
    transform = T.Compose([
        T.Resize((input_size, input_size)),
        T.ToTensor(),
        T.Normalize(mean=dataset_mean, std=dataset_std)
    ])

    # Open the image
    image = Image.open(image_path).convert('RGB')

    # Apply the transformations
    processed_image = transform(image)

    return processed_image
def load_model_from_huggingface(repo_id, model_filename):
    # Download model files
    model_path = snapshot_download(repo_id=repo_id, revision="main")
    model_weights_path = Path(model_path) / model_filename

    # Load model weights
    model_weights = torch.load(model_weights_path)['model']

    # Define the model (ensure this matches your model's architecture)
    model = VisionTransformer(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)).eval()

    # Load the weights into the model
    loading = model.load_state_dict(model_weights, strict=False)

    return model, loading


image_paths = sorted(Path('demo_images').glob('*.png')) # TODO replace with image path
images = torch.stack([process_single_image(image_path) for image_path in image_paths])

device = "cuda"
dtype = torch.float16
model, loading_info = load_model_from_huggingface("egeozsoy/EndoViT", "pytorch_model.bin")
model = model.to(device, dtype)
print(loading_info)
output = model.forward_features(images.to(device, dtype))
print(output.shape)
```


## ✏️ Citation

```
@article{batic2024endovit,
  title={EndoViT: pretraining vision transformers on a large collection of endoscopic images},
  author={Bati{\'c}, Dominik and Holm, Felix and {\"O}zsoy, Ege and Czempiel, Tobias and Navab, Nassir},
  journal={International Journal of Computer Assisted Radiology and Surgery},
  pages={1--7},
  year={2024},
  publisher={Springer}
}
```