File size: 3,057 Bytes
100a0c2 8050e5e 306def0 100a0c2 7692a27 100a0c2 ec9828c 100a0c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
license: apache-2.0
tags:
- medical
- Image Feature Extraction
datasets:
- Geometryyy/Cholec80
- minwoosun/CholecSeg8k
library_name: timm
---
<!-- markdownlint-disable first-line-h1 -->
<!-- markdownlint-disable html -->
<div align="center">
<h1>
EndoViT
</h1>
</div>
<p align="center">
<a href="https://link.springer.com/article/10.1007/s11548-024-03091-5" target="_blank">Paper</a> <a href="https://github.com/DominikBatic/EndoViT" target="_blank">Github</a></a>
</p>
<div align="center">
</div>
##Get Started
This section provides a quick start example for using the EndoViT model.
Installation:
```python
pip install torch==2.0.1 timm==0.9.16 huggingface-hub==0.22.2
```
Extracting features from a list of images. (Can also be a good starting point for using EndoViT as backbone)
```python
import torch
import torchvision.transforms as T
from PIL import Image
from pathlib import Path
from timm.models.vision_transformer import VisionTransformer
from functools import partial
from torch import nn
from huggingface_hub import snapshot_download
def process_single_image(image_path, input_size=224, dataset_mean=[0.3464, 0.2280, 0.2228], dataset_std=[0.2520, 0.2128, 0.2093]):
# Define the transformations
transform = T.Compose([
T.Resize((input_size, input_size)),
T.ToTensor(),
T.Normalize(mean=dataset_mean, std=dataset_std)
])
# Open the image
image = Image.open(image_path).convert('RGB')
# Apply the transformations
processed_image = transform(image)
return processed_image
def load_model_from_huggingface(repo_id, model_filename):
# Download model files
model_path = snapshot_download(repo_id=repo_id, revision="main")
model_weights_path = Path(model_path) / model_filename
# Load model weights
model_weights = torch.load(model_weights_path)['model']
# Define the model (ensure this matches your model's architecture)
model = VisionTransformer(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)).eval()
# Load the weights into the model
loading = model.load_state_dict(model_weights, strict=False)
return model, loading
image_paths = sorted(Path('demo_images').glob('*.png')) # TODO replace with image path
images = torch.stack([process_single_image(image_path) for image_path in image_paths])
device = "cuda"
dtype = torch.float16
model, loading_info = load_model_from_huggingface("egeozsoy/EndoViT", "pytorch_model.bin")
model = model.to(device, dtype)
print(loading_info)
output = model.forward_features(images.to(device, dtype))
print(output.shape)
```
## ✏️ Citation
```
@article{batic2024endovit,
title={EndoViT: pretraining vision transformers on a large collection of endoscopic images},
author={Bati{\'c}, Dominik and Holm, Felix and {\"O}zsoy, Ege and Czempiel, Tobias and Navab, Nassir},
journal={International Journal of Computer Assisted Radiology and Surgery},
pages={1--7},
year={2024},
publisher={Springer}
}
``` |