File size: 2,243 Bytes
3b49764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: microsoft/Phi-3-mini-4k-instruct
model-index:
- name: phi-3-mini-QLoRA
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# phi-3-mini-QLoRA

This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5741

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.1422        | 0.1810 | 100  | 0.6625          |
| 0.6238        | 0.3619 | 200  | 0.6002          |
| 0.5932        | 0.5429 | 300  | 0.5906          |
| 0.5926        | 0.7238 | 400  | 0.5860          |
| 0.5794        | 0.9048 | 500  | 0.5834          |
| 0.5868        | 1.0857 | 600  | 0.5815          |
| 0.5711        | 1.2667 | 700  | 0.5796          |
| 0.5729        | 1.4476 | 800  | 0.5785          |
| 0.5858        | 1.6286 | 900  | 0.5772          |
| 0.5732        | 1.8095 | 1000 | 0.5763          |
| 0.5736        | 1.9905 | 1100 | 0.5756          |
| 0.5638        | 2.1715 | 1200 | 0.5754          |
| 0.5769        | 2.3524 | 1300 | 0.5746          |
| 0.5668        | 2.5334 | 1400 | 0.5745          |
| 0.5675        | 2.7143 | 1500 | 0.5742          |
| 0.5693        | 2.8953 | 1600 | 0.5741          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1