File size: 2,869 Bytes
dcc378b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---

language: es
tags:
- sagemaker
- ruperta
- TextClassification
- SentimentAnalysis
license: apache-2.0
datasets:
- IMDbreviews_es
model-index:
name: RuPERTa_base_sentiment_analysis_es
results:
  - task:
        name: Sentiment Analysis
        type: sentiment-analysis
  - dataset:
        name: "IMDb Reviews in Spanish" 
        type: IMDbreviews_es
  - metrics:
       - name: Accuracy,
         type: accuracy,
         value: 0.881866
       - name: F1 Score,
         type: f1,
         value: 0.008272
       - name: Precision,
         type: precision,
         value: 0.858605
       - name: Recall,
         type: recall,
         value: 0.920062
widget:
- text: "Se trata de una película interesante, con un solido argumento y un gran interpretación de su actor principal"
---


## Model `RuPERTa_base_sentiment_analysis_es`

### **A finetuned model for Sentiment analysis in Spanish**

This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container,
The base model is **RuPERTa-base (uncased)** which is a RoBERTa model trained on a uncased version of big Spanish corpus.
It was trained by mrm8488, Manuel Romero.[Link to base model](https://huggingface.co/mrm8488/RuPERTa-base) 

## Dataset
The dataset is a collection of movie reviews in Spanish, about 50,000 reviews. The dataset is balanced and provides every review in english, in spanish and the label in both languages. 

Sizes of datasets:
- Train dataset: 42,500
- Validation dataset: 3,750
- Test dataset: 3,750


## Hyperparameters
    {

    "epochs": "4",

    "train_batch_size": "32",    

    "eval_batch_size": "8",

    "fp16": "true",

    "learning_rate": "3e-05",

    "model_name": "\"mrm8488/RuPERTa-base\"",

    "sagemaker_container_log_level": "20",

    "sagemaker_program": "\"train.py\"",

    }


## Evaluation results
Accuracy = 0.8629333333333333
F1 Score = 0.8648790746582545
Precision = 0.8479381443298969
Recall = 0.8825107296137339

## Test results
Accuracy = 0.8066666666666666
F1 Score = 0.8057862309134743
Precision = 0.7928307854507116
Recall = 0.8191721132897604

## Model in action

### Usage for Sentiment Analysis

```python

import torch

from transformers import AutoTokenizer, AutoModelForSequenceClassification



tokenizer = AutoTokenizer.from_pretrained("edumunozsala/RuPERTa_base_sentiment_analysis_es")

model = AutoModelForSequenceClassification.from_pretrained("edumunozsala/RuPERTa_base_sentiment_analysis_es")



text ="Se trata de una película interesante, con un solido argumento y un gran interpretación de su actor principal"



input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0)

outputs = model(input_ids)

output = outputs.logits.argmax(1)

```

Created by [Eduardo Muñoz/@edumunozsala](https://github.com/edumunozsala)