File size: 14,100 Bytes
7fcc236 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x78524983f520>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78524983f5b0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78524983f640>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78524983f6d0>",
"_build": "<function ActorCriticPolicy._build at 0x78524983f760>",
"forward": "<function ActorCriticPolicy.forward at 0x78524983f7f0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78524983f880>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78524983f910>",
"_predict": "<function ActorCriticPolicy._predict at 0x78524983f9a0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78524983fa30>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78524983fac0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78524983fb50>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x785249840900>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1718283100938342338,
"learning_rate": 0.0003,
"tensorboard_log": null,
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKaT8D10kAw/B5mHvtabmr4xZOy9ChgGvQAAAAAAAAAAABDDuhToprq9qiG4qT8Zs8yTJ7ntnjk3AACAPwAAgD8Ahr28FCisuoPNjzrZIuE3pL8lupzNKLkAAIA/AACAP1qZoD32XBO6l9rJOkbZ1jVBE/w5FtHwuQAAgD8AAIA/WvuUPSlMXrqWcI65ILSetPWxfjsqLqc4AACAPwAAgD9Ns+M9sNJEP+5zs72hz3O+0WEFPfGBnbsAAAAAAAAAAE3SKD0pZD26UkaPOWucFTXCFKc7BH2muAAAgD8AAIA/OgxJPqhemLw9O/47T9FGumTsBL7L7x27AACAPwAAgD+a1Jy9Ur12P7U5cTxa8oi+MUaIvNOBKj0AAAAAAAAAAGDtS746zxY+E6tDPoRCW77Lgo08QkAEvQAAAAAAAAAAGvM/vaMoiz4F3849IfVNvqWvfLv5wxI8AAAAAAAAAAAz9JY+VptAP518f706IIG+p2ugPRpfHr4AAAAAAAAAADNHm7tco3G63bnKO9rqabRS++I60MySswAAgD8AAIA/GjQdvcPxTLoN/5877TJ5OAp/ljsSEai4AACAPwAAgD8A6wg9hcvZuVY3EDo8gCS0sAaeO/tZLbkAAIA/AACAPyYrxz2kQD25i+b5uWRkFDQ+dFs6ngWPswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF3RBN21Ul2MAWyUTegDjAF0lEdAmfIvexfOU3V9lChoBkdAYq0ckMTewmgHTegDaAhHQJnyo+iaiK11fZQoaAZHQGA5MQmNR3xoB03oA2gIR0CaBYLlFMIvdX2UKGgGR0Bf9p1eSjgyaAdN6ANoCEdAmga90mtyP3V9lChoBkdAY2OdCmdiD2gHTegDaAhHQJoIo+Sr5qN1fZQoaAZHQGFV0se4kNZoB03oA2gIR0CaDPra/RE4dX2UKGgGR0BkJ9oakyk9aAdN6ANoCEdAmhd7vb48EHV9lChoBkdAYgM51/2Cd2gHTegDaAhHQJoaWpEQXhx1fZQoaAZHQGGgPGhmGudoB03oA2gIR0CaGtpg1FYudX2UKGgGR0BgFhQJokAxaAdN6ANoCEdAmh8bXcxj8XV9lChoBkdAWJnk3juKGmgHTegDaAhHQJolKh4+r2h1fZQoaAZHQGVM7gTAWSFoB03oA2gIR0CaJoxO+IuXdX2UKGgGR0Bh9xN9H+ZPaAdN6ANoCEdAmivXoHLRr3V9lChoBkdAZTSEoOQQtmgHTegDaAhHQJos6TKT0QN1fZQoaAZHQFsSrbxmTTxoB03oA2gIR0CaL7DWsijddX2UKGgGR0BD2Fe4TbnHaAdNJQFoCEdAmjBZAUtZm3V9lChoBkdAYYOlY2bXpWgHTegDaAhHQJo0MxYaHbh1fZQoaAZHQGY9mY8dPtVoB03oA2gIR0CaNsfgJkXldX2UKGgGR0BiZQDTz/ZNaAdN6ANoCEdAmkiGZAprlHV9lChoBkdAYVJZ13dKumgHTegDaAhHQJpXHUpd8iR1fZQoaAZHQGBNI7eVLSNoB03oA2gIR0CaWLeg+QlsdX2UKGgGR0BkKmtEG7jDaAdN6ANoCEdAmltJ3gUDdXV9lChoBkdAYjGee4Cp32gHTegDaAhHQJphlJEpiJB1fZQoaAZHQGE8Emplz2hoB03oA2gIR0CabXUWl/H6dX2UKGgGR0BiaVVHWjGlaAdN6ANoCEdAmnCS4vvjO3V9lChoBkdAZdunXumaY2gHTegDaAhHQJp1rNSqEOB1fZQoaAZHQF+mkELYwqRoB03oA2gIR0Cae8RQJokBdX2UKGgGR0BkXo1cdHUdaAdN6ANoCEdAmn0dGmUGFHV9lChoBkdAZvd2C/XXiGgHTegDaAhHQJqCMxk/bCd1fZQoaAZHQGbXBXKbKA9oB03oA2gIR0CagzbW3BpIdX2UKGgGR0Bd720u14PgaAdN6ANoCEdAmoYZMcp9Z3V9lChoBkdAY3tNDc/MXGgHTegDaAhHQJqHAjgQ6IZ1fZQoaAZHQGI4QcxTKkloB03oA2gIR0CajI3dsSCfdX2UKGgGR0BjwX2f029+aAdN6ANoCEdAmpEg9V3ljnV9lChoBkdAZBvhBJI1+GgHTegDaAhHQJqRmkyk9EF1fZQoaAZHQHFwFJQLux9oB02KAWgIR0CatW2FFlTWdX2UKGgGR0BjvJ/Aj6eoaAdN6ANoCEdAmreUwJw84nV9lChoBkdAYFPOUt7KJWgHTegDaAhHQJq43tw71Zl1fZQoaAZHQFsXfeDWbw1oB03oA2gIR0CauvEMspXqdX2UKGgGR0BghQV/MGHIaAdN6ANoCEdAmr+A9zOopHV9lChoBkdAXtTjYI0IkmgHTegDaAhHQJrO+m0mdAh1fZQoaAZHQGIYBX0XgtRoB03oA2gIR0Ca0iju8brDdX2UKGgGR0Bj8AizLOiWaAdN6ANoCEdAmtc/WpZOi3V9lChoBkdAZUrl90A93mgHTegDaAhHQJrcnQPZqVR1fZQoaAZHQFzPUlzEJjVoB03oA2gIR0Ca3dABT4tZdX2UKGgGR0BlLWCAc1fmaAdN6ANoCEdAmuHLcj7hvXV9lChoBkdAXunYvnKW9mgHTegDaAhHQJrk/VFx4pt1fZQoaAZHQGOBHcUM5OtoB03oA2gIR0Ca5bcLSeAedX2UKGgGR0BlufJ5mh/RaAdN6ANoCEdAmumy4nWrfnV9lChoBkdAZFsgbIcR2GgHTegDaAhHQJrsYLCvX9R1fZQoaAZHQFziTd+G47RoB03oA2gIR0Ca7Kgv114gdX2UKGgGR0BwfvcHnlnzaAdN6wFoCEdAmu3ER3/xUnV9lChoBkdAYN9+aScLB2gHTegDaAhHQJsNYV2zOX51fZQoaAZHQGKgQPqcEvFoB03oA2gIR0CbDzS3b212dX2UKGgGR0BgNwccU/OdaAdN6ANoCEdAmxBA1JlJ6XV9lChoBkdAYZwlsP8Q7WgHTegDaAhHQJsSBYdQwbl1fZQoaAZHQGR8FXRw6yVoB03oA2gIR0CbFpPAwfyPdX2UKGgGR0Bj1kPrfLs9aAdN6ANoCEdAmySWHYYixHV9lChoBkdAY7WKWLP2PGgHTegDaAhHQJsqBKUVzp51fZQoaAZHQGErUhV2icpoB03oA2gIR0CbMbAo5PuYdX2UKGgGR0Bgx2Jiy6czaAdN6ANoCEdAmzNnaakRBnV9lChoBkdAYX927nPmgmgHTegDaAhHQJs4fqs2ehB1fZQoaAZHQGOdny3CsOpoB03oA2gIR0CbO/gmqo60dX2UKGgGR0Bfor+5vtMPaAdN6ANoCEdAmzy5P69CeHV9lChoBkdAZTWFGoaUA2gHTegDaAhHQJtA7posZpB1fZQoaAZHQGKoG/WUbDNoB03oA2gIR0CbQ+8q4H5adX2UKGgGR0BjVs8gZCOWaAdN6ANoCEdAm0RCIYWLxnV9lChoBkdAZDcAksz2vmgHTegDaAhHQJtFjq5byH51fZQoaAZHQGNnkcKgIyFoB03oA2gIR0CbZXA2hqTKdX2UKGgGR0Bj2OwJPZZkaAdN6ANoCEdAm2fJZ4fOlnV9lChoBkdAYhkqPwNLDmgHTegDaAhHQJtpZV3ljmV1fZQoaAZHQGVpXV09yLhoB03oA2gIR0Cba5Gza9K3dX2UKGgGR0BkdSVnmJWOaAdN6ANoCEdAm2/CcwxnF3V9lChoBkdAWT6uq3mV7mgHTegDaAhHQJt95E0BOpN1fZQoaAZHQF2c8kD6nBNoB03oA2gIR0Cbgwy+Yc//dX2UKGgGR0BgNBe1KGtZaAdN6ANoCEdAm4i+S0Sh8XV9lChoBkdAYVV13dKujmgHTegDaAhHQJuJ/jaPCEZ1fZQoaAZHQF2L2B8QZoBoB03oA2gIR0CbjiRJEpiJdX2UKGgGR0BgPng9/z8QaAdN6ANoCEdAm5EqDkELY3V9lChoBkdAYlJbblA/s2gHTegDaAhHQJuR38P4EfV1fZQoaAZHQGaiqdYnv2JoB03oA2gIR0CblyKnvUjLdX2UKGgGR0BkkxhWo3rEaAdN6ANoCEdAm5rj+m3vyHV9lChoBkdAYKjSn+AEuGgHTegDaAhHQJubQxesxPB1fZQoaAZHQGLzeRxLkCFoB03oA2gIR0CbnL/IKc/ddX2UKGgGR0Bw2yJfpljFaAdNsAFoCEdAm7c+lXRw63V9lChoBkdAYer8/lhgE2gHTegDaAhHQJu64X9BKL91fZQoaAZHQGY930wrUb1oB03oA2gIR0CbvHwYLsrvdX2UKGgGR0Bf4BzaK1ohaAdN6ANoCEdAm718rRSgoXV9lChoBkdAZXyzzErGzmgHTegDaAhHQJu/LNUwSJ11fZQoaAZHQGdvz/yXlbNoB03oA2gIR0CbwxNwBHTadX2UKGgGR0BlGBg3Lmp3aAdN6ANoCEdAm9OT90ihWnV9lChoBkdAXtu4rjHXE2gHTegDaAhHQJvYsCbMHKR1fZQoaAZHQGYRGAkLQX1oB03oA2gIR0Cb3suyu6mPdX2UKGgGR0BjcyhJyyUtaAdN6ANoCEdAm+Kj72tdRnV9lChoBkdAY+3xm03OwGgHTegDaAhHQJvlh4QjD9B1fZQoaAZHQGDtD7IkqtpoB03oA2gIR0Cb5jQIUrTZdX2UKGgGR0Bgce4LCvX9aAdN6ANoCEdAm+ne0w8GLXV9lChoBkdAY0ASFoL5RGgHTegDaAhHQJvsOYhMajx1fZQoaAZHQGSYF05lvqFoB03oA2gIR0Cb7HsIVuaXdX2UKGgGR0BjKYzN2TxHaAdN6ANoCEdAm+2G+GoJiXVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
"n": "4",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
}
} |