File size: 1,365 Bytes
048b51a 4b2114d 7393c1e 4b2114d 048b51a 4b2114d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
language:
- en
- fr
- ro
- de
datasets:
- c4
tags:
- summarization
- translation
- openvino
license: apache-2.0
---
## [t5-small](https://huggingface.co/t5-small) exported to the OpenVINO IR.
## Model description
[T5](https://huggingface.co/docs/transformers/model_doc/t5#t5) is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format.
For more information, please take a look at the original paper.
Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)
Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*
## Usage example
You can use this model with Transformers *pipeline*.
```python
from transformers import AutoTokenizer, pipeline
from optimum.intel.openvino import OVModelForSeq2SeqLM
model_id = "echarlaix/t5-small-openvino"
model = OVModelForSeq2SeqLM.from_pretrained(model_id, use_cache=False)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Create a pipeline
translation_pipe = pipeline("translation_en_to_fr", model=model, tokenizer=tokenizer)
text = "He never went out without a book under his arm, and he often came back with two."
result = translation_pipe(text)
```
|