gen-inst-1 / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
c46a53c verified
|
raw
history blame
3.76 kB
metadata
license: apache-2.0
tags:
  - axolotl
  - generated_from_trainer
base_model: Qwen/Qwen2.5-14B-Instruct
model-index:
  - name: gen-inst-1
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.5.2

base_model: Qwen/Qwen2.5-14B-Instruct
model_type: Qwen2ForCausalLM
tokenizer_type: Qwen2Tokenizer

trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: dwikitheduck/genesist-inst
    type: completion
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out

sequence_len: 4096  
sample_packing: false
pad_to_sequence_len:

adapter: lora
lora_model_dir:
lora_r: 64
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: axolotl-soca
wandb_entity: soca-ai
wandb_watch:
wandb_name:
wandb_log_model:

hub_model_id: dwikitheduck/gen-inst-1

gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_steps: 10
evals_per_epoch: 3
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:

save_safetensors: true

gen-inst-1

This model is a fine-tuned version of Qwen/Qwen2.5-14B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0180

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.3674 0.0002 1 1.5999
0.8378 0.3334 1873 1.0342
0.9453 0.6668 3746 1.0180

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.3.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 34.03
IFEval (0-Shot) 77.50
BBH (3-Shot) 48.32
MATH Lvl 5 (4-Shot) 4.46
GPQA (0-shot) 16.22
MuSR (0-shot) 12.27
MMLU-PRO (5-shot) 45.43