dvs's picture
update model card README.md
131a8c0
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-mulder-v-scully-colab
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

swin-tiny-patch4-window7-224-mulder-v-scully-colab

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3652
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 0.6105 0.75
No log 2.0 2 0.6975 0.5
No log 3.0 3 0.8309 0.25
No log 4.0 4 0.7604 0.5
No log 5.0 5 0.6327 0.5
No log 6.0 6 0.5101 0.75
No log 7.0 7 0.4148 0.75
No log 8.0 8 0.3652 1.0
No log 9.0 9 0.3433 1.0
0.0984 10.0 10 0.3231 1.0
0.0984 11.0 11 0.3071 1.0
0.0984 12.0 12 0.3047 1.0
0.0984 13.0 13 0.3189 0.75
0.0984 14.0 14 0.3437 0.75
0.0984 15.0 15 0.3701 0.75
0.0984 16.0 16 0.3959 0.75
0.0984 17.0 17 0.4167 0.75
0.0984 18.0 18 0.4190 0.75
0.0984 19.0 19 0.4154 0.75
0.0632 20.0 20 0.4114 0.75

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3