File size: 13,683 Bytes
fb5fc45
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c87c951e9e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c87c951ea70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c87c951eb00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c87c951eb90>", "_build": "<function ActorCriticPolicy._build at 0x7c87c951ec20>", "forward": "<function ActorCriticPolicy.forward at 0x7c87c951ecb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c87c951ed40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c87c951edd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c87c951ee60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c87c951eef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c87c951ef80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c87c951f010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c87c9524640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702002849736636874, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpOxzzDuX66U2IRu9xxazzDvME5elJPPQAAgD8AAIA/Zk3IPEjXoLr1zTizALYRLsWbILrew6QzAACAPwAAgD+an6Q8WyfevHvLuzsw6BY9NKLrPVYuVr0AAIA/AACAP2Zu4D2T9y4/gdWkPT865L5uneM9K+BjvQAAAAAAAAAA+shjvlPxAz8yE3k+FHCkvvYrIr3oW+g9AAAAAAAAAADa/hW+dYsMP55CVT6DEtG+YsXzvNY+Qz0AAAAAAAAAAGDnNT5hV8o+c+YTvrV1s75jdGk82IT0OgAAAAAAAAAATd7RPb+BoT/xXSo/hNglv8nsRz0dxqQ+AAAAAAAAAAAASBm83P8ZvE43zD1BGaa9QMWSvXOUi74AAIA/AACAP5ow/j0Cv1U/84+8PYzd7b5gSfg9kYmHvQAAAAAAAAAAgLsZPeHwlrpFOvA2j4PAMfNGbbrAWgy2AACAPwAAgD+awgI9VngYPYl7Nr6XcW2+LILJvLqV2L0AAAAAAAAAAIBcvj2jwTg/FRMLPHIM1b5wzb09ho58PAAAAAAAAAAAmsISvZjIlz+taSW+TKb3vgR6nb0h/8m9AAAAAAAAAABmWFc8DWRMPzjDzD1xDcK+C9XmPPWufD0AAAAAAAAAADPpqL0MP6s+5jltPmSLn77oeKc7mfoBPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEoDG5tm+WMAWyUS+SMAXSUR0C3t5DJp35fdX2UKGgGR0Bz4YgcLjPwaAdL4WgIR0C3t5oNNJvpdX2UKGgGR0Bw4hpeu3c6aAdNIwFoCEdAt7eYIAwPAnV9lChoBkdAUKvag2606mgHS8JoCEdAt7f6df9gnnV9lChoBkdAcoY1AJLM92gHTQgBaAhHQLe4GjIq9Xd1fZQoaAZHQHNySGFi8WdoB0v+aAhHQLe4G8ejmCB1fZQoaAZHQHLvzQRf4RFoB0vkaAhHQLe4JbYbsGB1fZQoaAZHQHKfGOuJUHZoB00bAWgIR0C3uFbKRuCPdX2UKGgGR0Bx4wrbxmTUaAdNDQFoCEdAt7h07GNrCXV9lChoBkdAbNbCrtE5Q2gHS/BoCEdAt7iDeN1hcHV9lChoBkdAcVvNcW0qpmgHTQMBaAhHQLe4w2G7Bft1fZQoaAZHQHFwSqlxffJoB00TAWgIR0C3uNAiA2AHdX2UKGgGR0BxGRHMEA5raAdNAQFoCEdAt7jr6ab4J3V9lChoBkdAcNYa1Cw8n2gHTQ0BaAhHQLe49WKuSwJ1fZQoaAZHQHKTmvr4WUNoB00kAWgIR0C3uQu7g88tdX2UKGgGR0ByIlOCXhOyaAdNDAFoCEdAt7kshnrY5HV9lChoBkdAccx4wAU+LWgHS/9oCEdAt7kybnX/YXV9lChoBkdAcrxz3AVO9GgHS/9oCEdAt7k4qI7/43V9lChoBkdAcrxyeqaPS2gHTRcBaAhHQLe5X5Lh73R1fZQoaAZHQHHOdadMCcRoB0v2aAhHQLe5kvxpcop1fZQoaAZHQHLLAAyVObloB0veaAhHQLe5ziw0O3F1fZQoaAZHQHAb4r4Fia1oB00HAWgIR0C3udG56MR6dX2UKGgGR0Bu/cp/gBLgaAdNBwFoCEdAt7nbreIl+nV9lChoBkdAcO9b4agmJGgHTRwBaAhHQLe58a4c3l11fZQoaAZHQHIAZjx0+1VoB0vxaAhHQLe6FX7+DOF1fZQoaAZHQHBzOLWI42loB00XAWgIR0C3ukgXVLBbdX2UKGgGR0BzOR9qk/KRaAdL6mgIR0C3ukjWXkYGdX2UKGgGR0BwV+KgqVhTaAdL+GgIR0C3upEtEofCdX2UKGgGR0Bv1s+PikwfaAdNBwFoCEdAt7qRBUrCnHV9lChoBkdAb9LWkrPMS2gHS/ZoCEdAt7qX/cWTHXV9lChoBkdANj4lt0mtyWgHS8poCEdAt7rDgCOmznV9lChoBkdAcZBpmEoOQWgHS+1oCEdAt7rF33YcvXV9lChoBkdAcLr4rSVnmWgHTRABaAhHQLe64O0LMLZ1fZQoaAZHQHIE2DDjzZpoB0v9aAhHQLe66oXbdrR1fZQoaAZHQHHWp80DU3JoB00mAWgIR0C3wNIP07KadX2UKGgGR0BxmJZ4fOlgaAdL4GgIR0C3wPem78NydX2UKGgGR0BxWhaMaS9vaAdNCgFoCEdAt8EB3EAHV3V9lChoBkdAcaYKDkELY2gHS/doCEdAt8EaR+z+m3V9lChoBkdAciwOFxn3+WgHS/NoCEdAt8EgJgLJCHV9lChoBkdAcQ12IwdsBWgHTRIBaAhHQLfBaWJ79ht1fZQoaAZHQHD8j/2kBS1oB0vjaAhHQLfBcXumaYx1fZQoaAZHQHG1TWkJrtVoB00TAWgIR0C3wZAVKwpwdX2UKGgGR0BtkIM4LkS3aAdNEAFoCEdAt8G/YWcjJXV9lChoBkdAc2Q4pMHryGgHS/NoCEdAt8HMHdGiH3V9lChoBkdAcEeW1twaSGgHS/RoCEdAt8HNKsdT53V9lChoBkdAclBjOLR8dGgHTRcBaAhHQLfCD7bL2Yh1fZQoaAZHQHNAX0PH1e1oB00LAWgIR0C3wialk6LgdX2UKGgGR0ByDU2606YFaAdNDAFoCEdAt8JB+mWMTHV9lChoBkdAc6O3PiT+vWgHTQkBaAhHQLfCRoCuEEl1fZQoaAZHQHN6oISlFc9oB00mAWgIR0C3wlQ7cO9WdX2UKGgGR0BJPeSjgydnaAdL4GgIR0C3wnvBvaUSdX2UKGgGR0BwSWVAzHjqaAdNHAFoCEdAt8K3Q2MsH3V9lChoBkdAcYJfeDWbw2gHS/VoCEdAt8K+ckMTe3V9lChoBkdAcs2Q4CIUJ2gHS/xoCEdAt8LRUMoc73V9lChoBkdAb/+obXHzYmgHTRQBaAhHQLfC0Cgbp/x1fZQoaAZHQHFNJ6yB06poB00AAWgIR0C3wyEQbuMNdX2UKGgGR0By+oJZ4fOlaAdL/WgIR0C3wyRwl0HRdX2UKGgGR0BuhRJbt7a7aAdL9WgIR0C3wzSdOIqLdX2UKGgGR0BxCMHHFPznaAdL+mgIR0C3w2ZF1B+ndX2UKGgGR0Bw2umVJL/TaAdL8mgIR0C3w2WvStvGdX2UKGgGR0BzFCsKb8WLaAdNHwFoCEdAt8OubG3nZHV9lChoBkdAbeLB+nZTQ2gHS+ZoCEdAt8PAcm0E5nV9lChoBkdAcmuBdD6WPmgHS/5oCEdAt8PPc8DB/XV9lChoBkdAbWDHEMspX2gHS/9oCEdAt8PvSqlxfnV9lChoBkdAbzGmixmkFmgHS/1oCEdAt8P5tSAH3XV9lChoBkdAckbgJkXk52gHTSoBaAhHQLfEBDRc/t91fZQoaAZHQHC+FpCa7VdoB0v0aAhHQLfEEphWo3t1fZQoaAZHQHBtDKkl/pdoB0vlaAhHQLfEMy+HrQh1fZQoaAZHQHMHvVmSQo1oB0vsaAhHQLfEUGy5Zr51fZQoaAZHQEgOURFqi49oB0u+aAhHQLfEWo99tuV1fZQoaAZHQHMeqRyOrABoB0v/aAhHQLfEWXvH93t1fZQoaAZHQHBDUF8ohIRoB0v6aAhHQLfEZ7A+IM11fZQoaAZHQHBo1pGnXNFoB0vuaAhHQLfEtVAiV0N1fZQoaAZHQHELsCkoF3ZoB00UAWgIR0C3xOBKHwgDdX2UKGgGR0ByjVX3g1m8aAdL9GgIR0C3xPM+qzZ6dX2UKGgGR0BwaI8r7O3VaAdNEwFoCEdAt8U30f5k9XV9lChoBkdAcdJj1wo9cWgHS+poCEdAt8U/NdJJ5HV9lChoBkdAcNVLWZqmCWgHS99oCEdAt8WStr9ETnV9lChoBkdAbzzmOlwcYWgHS+toCEdAt8WeTkhib3V9lChoBkdActoa+vhZQ2gHTQUBaAhHQLfFm75mAb11fZQoaAZHQHBup6+nIhhoB0vdaAhHQLfFrCfpUxV1fZQoaAZHQGzaTw+dK/VoB00SAWgIR0C3xcFZDArQdX2UKGgGR0BuGHRsuWa+aAdL7WgIR0C3xelBdD6WdX2UKGgGR0Bwnc/0NBnjaAdL6mgIR0C3xgH6l+EzdX2UKGgGR0BQ2CpaRp1zaAdLtmgIR0C3xheoP07KdX2UKGgGR0ByKzSPU8V6aAdNPAFoCEdAt8Y8S13MZHV9lChoBkdAcp444ZMtb2gHTQYBaAhHQLfGSe4kNWl1fZQoaAZHQHGZb5dnkDJoB00XAWgIR0C3xlavq1PWdX2UKGgGR0BxB1BC2MKkaAdNMQFoCEdAt8aCM72crnV9lChoBkdAcnokaMrEtWgHS+VoCEdAt8aPDBMzuXV9lChoBkdAceOyoGY8dWgHTQoBaAhHQLfG4xhUipx1fZQoaAZHQHIk8GcFyJdoB0vuaAhHQLfG7yfcvdx1fZQoaAZHQE+tdpItlI5oB0vIaAhHQLfG8WRA8jl1fZQoaAZHQHDXteUpuuRoB0vbaAhHQLfHBxp+MIh1fZQoaAZHQG+O9krf+CNoB0veaAhHQLfHIjI7vG91fZQoaAZHQHN0N4FA3UBoB0vgaAhHQLfHOhTfixV1fZQoaAZHQG/x3cgyM1loB0v4aAhHQLfHPYR/ViF1fZQoaAZHQHH/GpuMuOFoB00xAWgIR0C3x1ZCa7VbdX2UKGgGR0BymB9LHuJDaAdL6WgIR0C3x4F8Ti84dX2UKGgGR0BzmzL4etCBaAdL/2gIR0C3x47yMDOkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}