File size: 7,312 Bytes
813828b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from dataclasses import dataclass, field
from typing import List

from TTS.tts.configs.shared_configs import BaseTTSConfig
from TTS.tts.models.forward_tts import ForwardTTSArgs


@dataclass
class Fastspeech2Config(BaseTTSConfig):
    """Configure `ForwardTTS` as FastPitch model.

    Example:

        >>> from TTS.tts.configs.fastspeech2_config import FastSpeech2Config
        >>> config = FastSpeech2Config()

    Args:
        model (str):
            Model name used for selecting the right model at initialization. Defaults to `fast_pitch`.

        base_model (str):
            Name of the base model being configured as this model so that 🐸 TTS knows it needs to initiate
            the base model rather than searching for the `model` implementation. Defaults to `forward_tts`.

        model_args (Coqpit):
            Model class arguments. Check `FastPitchArgs` for more details. Defaults to `FastPitchArgs()`.

        data_dep_init_steps (int):
            Number of steps used for computing normalization parameters at the beginning of the training. GlowTTS uses
            Activation Normalization that pre-computes normalization stats at the beginning and use the same values
            for the rest. Defaults to 10.

        speakers_file (str):
            Path to the file containing the list of speakers. Needed at inference for loading matching speaker ids to
            speaker names. Defaults to `None`.

        use_speaker_embedding (bool):
            enable / disable using speaker embeddings for multi-speaker models. If set True, the model is
            in the multi-speaker mode. Defaults to False.

        use_d_vector_file (bool):
            enable /disable using external speaker embeddings in place of the learned embeddings. Defaults to False.

        d_vector_file (str):
            Path to the file including pre-computed speaker embeddings. Defaults to None.

        d_vector_dim (int):
            Dimension of the external speaker embeddings. Defaults to 0.

        optimizer (str):
            Name of the model optimizer. Defaults to `Adam`.

        optimizer_params (dict):
            Arguments of the model optimizer. Defaults to `{"betas": [0.9, 0.998], "weight_decay": 1e-6}`.

        lr_scheduler (str):
            Name of the learning rate scheduler. Defaults to `Noam`.

        lr_scheduler_params (dict):
            Arguments of the learning rate scheduler. Defaults to `{"warmup_steps": 4000}`.

        lr (float):
            Initial learning rate. Defaults to `1e-3`.

        grad_clip (float):
            Gradient norm clipping value. Defaults to `5.0`.

        spec_loss_type (str):
            Type of the spectrogram loss. Check `ForwardTTSLoss` for possible values. Defaults to `mse`.

        duration_loss_type (str):
            Type of the duration loss. Check `ForwardTTSLoss` for possible values. Defaults to `mse`.

        use_ssim_loss (bool):
            Enable/disable the use of SSIM (Structural Similarity) loss. Defaults to True.

        wd (float):
            Weight decay coefficient. Defaults to `1e-7`.

        ssim_loss_alpha (float):
            Weight for the SSIM loss. If set 0, disables the SSIM loss. Defaults to 1.0.

        dur_loss_alpha (float):
            Weight for the duration predictor's loss. If set 0, disables the huber loss. Defaults to 1.0.

        spec_loss_alpha (float):
            Weight for the L1 spectrogram loss. If set 0, disables the L1 loss. Defaults to 1.0.

        pitch_loss_alpha (float):
            Weight for the pitch predictor's loss. If set 0, disables the pitch predictor. Defaults to 1.0.

        energy_loss_alpha (float):
            Weight for the energy predictor's loss. If set 0, disables the energy predictor. Defaults to 1.0.

        binary_align_loss_alpha (float):
            Weight for the binary loss. If set 0, disables the binary loss. Defaults to 1.0.

        binary_loss_warmup_epochs (float):
            Number of epochs to gradually increase the binary loss impact. Defaults to 150.

        min_seq_len (int):
            Minimum input sequence length to be used at training.

        max_seq_len (int):
            Maximum input sequence length to be used at training. Larger values result in more VRAM usage.

        # dataset configs
        compute_f0(bool):
            Compute pitch. defaults to True

        f0_cache_path(str):
            pith cache path. defaults to None

        # dataset configs
        compute_energy(bool):
            Compute energy. defaults to True

        energy_cache_path(str):
            energy cache path. defaults to None
    """

    model: str = "fastspeech2"
    base_model: str = "forward_tts"

    # model specific params
    model_args: ForwardTTSArgs = field(default_factory=lambda: ForwardTTSArgs(use_pitch=True, use_energy=True))

    # multi-speaker settings
    num_speakers: int = 0
    speakers_file: str = None
    use_speaker_embedding: bool = False
    use_d_vector_file: bool = False
    d_vector_file: str = False
    d_vector_dim: int = 0

    # optimizer parameters
    optimizer: str = "Adam"
    optimizer_params: dict = field(default_factory=lambda: {"betas": [0.9, 0.998], "weight_decay": 1e-6})
    lr_scheduler: str = "NoamLR"
    lr_scheduler_params: dict = field(default_factory=lambda: {"warmup_steps": 4000})
    lr: float = 1e-4
    grad_clip: float = 5.0

    # loss params
    spec_loss_type: str = "mse"
    duration_loss_type: str = "mse"
    use_ssim_loss: bool = True
    ssim_loss_alpha: float = 1.0
    spec_loss_alpha: float = 1.0
    aligner_loss_alpha: float = 1.0
    pitch_loss_alpha: float = 0.1
    energy_loss_alpha: float = 0.1
    dur_loss_alpha: float = 0.1
    binary_align_loss_alpha: float = 0.1
    binary_loss_warmup_epochs: int = 150

    # overrides
    min_seq_len: int = 13
    max_seq_len: int = 200
    r: int = 1  # DO NOT CHANGE

    # dataset configs
    compute_f0: bool = True
    f0_cache_path: str = None

    # dataset configs
    compute_energy: bool = True
    energy_cache_path: str = None

    # testing
    test_sentences: List[str] = field(
        default_factory=lambda: [
            "It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
            "Be a voice, not an echo.",
            "I'm sorry Dave. I'm afraid I can't do that.",
            "This cake is great. It's so delicious and moist.",
            "Prior to November 22, 1963.",
        ]
    )

    def __post_init__(self):
        # Pass multi-speaker parameters to the model args as `model.init_multispeaker()` looks for it there.
        if self.num_speakers > 0:
            self.model_args.num_speakers = self.num_speakers

        # speaker embedding settings
        if self.use_speaker_embedding:
            self.model_args.use_speaker_embedding = True
        if self.speakers_file:
            self.model_args.speakers_file = self.speakers_file

        # d-vector settings
        if self.use_d_vector_file:
            self.model_args.use_d_vector_file = True
        if self.d_vector_dim is not None and self.d_vector_dim > 0:
            self.model_args.d_vector_dim = self.d_vector_dim
        if self.d_vector_file:
            self.model_args.d_vector_file = self.d_vector_file