File size: 4,298 Bytes
a257816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
"""Decoder self-attention layer definition."""
from typing import Optional, Tuple

import torch
from torch import nn


class DecoderLayer(nn.Module):
    """Single decoder layer module.



    Args:

        size (int): Input dimension.

        self_attn (torch.nn.Module): Self-attention module instance.

            `MultiHeadedAttention` instance can be used as the argument.

        src_attn (torch.nn.Module): Inter-attention module instance.

            `MultiHeadedAttention` instance can be used as the argument.

            If `None` is passed, Inter-attention is not used, such as

            CIF, GPT, and other decoder only model.

        feed_forward (torch.nn.Module): Feed-forward module instance.

            `PositionwiseFeedForward` instance can be used as the argument.

        dropout_rate (float): Dropout rate.

        normalize_before (bool):

            True: use layer_norm before each sub-block.

            False: to use layer_norm after each sub-block.

    """

    def __init__(

        self,

        size: int,

        self_attn: nn.Module,

        src_attn: Optional[nn.Module],

        feed_forward: nn.Module,

        dropout_rate: float,

        normalize_before: bool = True,

    ):
        """Construct an DecoderLayer object."""
        super().__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.norm1 = nn.LayerNorm(size, eps=1e-5)
        self.norm2 = nn.LayerNorm(size, eps=1e-5)
        self.norm3 = nn.LayerNorm(size, eps=1e-5)
        self.dropout = nn.Dropout(dropout_rate)
        self.normalize_before = normalize_before

    def forward(

        self,

        tgt: torch.Tensor,

        tgt_mask: torch.Tensor,

        memory: torch.Tensor,

        memory_mask: torch.Tensor,

        cache: Optional[torch.Tensor] = None

    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        """Compute decoded features.



        Args:

            tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).

            tgt_mask (torch.Tensor): Mask for input tensor

                (#batch, maxlen_out).

            memory (torch.Tensor): Encoded memory

                (#batch, maxlen_in, size).

            memory_mask (torch.Tensor): Encoded memory mask

                (#batch, maxlen_in).

            cache (torch.Tensor): cached tensors.

                (#batch, maxlen_out - 1, size).



        Returns:

            torch.Tensor: Output tensor (#batch, maxlen_out, size).

            torch.Tensor: Mask for output tensor (#batch, maxlen_out).

            torch.Tensor: Encoded memory (#batch, maxlen_in, size).

            torch.Tensor: Encoded memory mask (#batch, maxlen_in).



        """
        residual = tgt
        if self.normalize_before:
            tgt = self.norm1(tgt)

        if cache is None:
            tgt_q = tgt
            tgt_q_mask = tgt_mask
        else:
            # compute only the last frame query keeping dim: max_time_out -> 1
            assert cache.shape == (
                tgt.shape[0],
                tgt.shape[1] - 1,
                self.size,
            ), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
            tgt_q = tgt[:, -1:, :]
            residual = residual[:, -1:, :]
            tgt_q_mask = tgt_mask[:, -1:, :]

        x = residual + self.dropout(
            self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0])
        if not self.normalize_before:
            x = self.norm1(x)

        if self.src_attn is not None:
            residual = x
            if self.normalize_before:
                x = self.norm2(x)
            x = residual + self.dropout(
                self.src_attn(x, memory, memory, memory_mask)[0])
            if not self.normalize_before:
                x = self.norm2(x)

        residual = x
        if self.normalize_before:
            x = self.norm3(x)
        x = residual + self.dropout(self.feed_forward(x))
        if not self.normalize_before:
            x = self.norm3(x)

        if cache is not None:
            x = torch.cat([cache, x], dim=1)

        return x, tgt_mask, memory, memory_mask