File size: 2,503 Bytes
a257816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from typing import Tuple
import torch.nn as nn
import torch
from torch.nn import functional as F
from VietTTS.utils.mask import make_pad_mask


class InterpolateRegulator(nn.Module):
    def __init__(

            self,

            channels: int,

            sampling_ratios: Tuple,

            out_channels: int = None,

            groups: int = 1,

    ):
        super().__init__()
        self.sampling_ratios = sampling_ratios
        out_channels = out_channels or channels
        model = nn.ModuleList([])
        if len(sampling_ratios) > 0:
            for _ in sampling_ratios:
                module = nn.Conv1d(channels, channels, 3, 1, 1)
                norm = nn.GroupNorm(groups, channels)
                act = nn.Mish()
                model.extend([module, norm, act])
        model.append(
            nn.Conv1d(channels, out_channels, 1, 1)
        )
        self.model = nn.Sequential(*model)

    def forward(self, x, ylens=None):
        # x in (B, T, D)
        mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
        x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='linear')
        out = self.model(x).transpose(1, 2).contiguous()
        olens = ylens
        return out * mask, olens

    def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50):
        # in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
        # x in (B, T, D)
        if x2.shape[1] > 40:
            x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
            x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - int(20 / input_frame_rate * 22050 / 256) * 2,
                                   mode='linear')
            x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
            x2 = torch.concat([x2_head, x2_mid, x2_tail], dim=2)
        else:
            x2 = F.interpolate(x2.transpose(1, 2).contiguous(), size=mel_len2, mode='linear')
        if x1.shape[1] != 0:
            x1 = F.interpolate(x1.transpose(1, 2).contiguous(), size=mel_len1, mode='linear')
            x = torch.concat([x1, x2], dim=2)
        else:
            x = x2
        out = self.model(x).transpose(1, 2).contiguous()
        return out, mel_len1 + mel_len2