File size: 6,717 Bytes
f884940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import cv2
import numpy as np
# import  time
import torch
from torch.nn import functional as F
import torch.nn as nn


def encode_segmentation_rgb(segmentation, no_neck=True):
    parse = segmentation

    face_part_ids = [1, 2, 3, 4, 5, 6, 10, 12, 13] if no_neck else [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14]
    mouth_id = 11
    # hair_id = 17
    face_map = np.zeros([parse.shape[0], parse.shape[1]])
    mouth_map = np.zeros([parse.shape[0], parse.shape[1]])
    # hair_map = np.zeros([parse.shape[0], parse.shape[1]])

    for valid_id in face_part_ids:
        valid_index = np.where(parse==valid_id)
        face_map[valid_index] = 255
    valid_index = np.where(parse==mouth_id)
    mouth_map[valid_index] = 255
    # valid_index = np.where(parse==hair_id)
    # hair_map[valid_index] = 255
    #return np.stack([face_map, mouth_map,hair_map], axis=2)
    return np.stack([face_map, mouth_map], axis=2)


class SoftErosion(nn.Module):
    def __init__(self, kernel_size=15, threshold=0.6, iterations=1):
        super(SoftErosion, self).__init__()
        r = kernel_size // 2
        self.padding = r
        self.iterations = iterations
        self.threshold = threshold

        # Create kernel
        y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size))
        dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2)
        kernel = dist.max() - dist
        kernel /= kernel.sum()
        kernel = kernel.view(1, 1, *kernel.shape)
        self.register_buffer('weight', kernel)

    def forward(self, x):
        x = x.float()
        for i in range(self.iterations - 1):
            x = torch.min(x, F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding))
        x = F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding)

        mask = x >= self.threshold
        x[mask] = 1.0
        x[~mask] /= x[~mask].max()

        return x, mask


def postprocess(swapped_face, target, target_mask,smooth_mask):
    # target_mask = cv2.resize(target_mask, (self.size,  self.size))

    mask_tensor = torch.from_numpy(target_mask.copy().transpose((2, 0, 1))).float().mul_(1/255.0).cuda()
    face_mask_tensor = mask_tensor[0] + mask_tensor[1]
    
    soft_face_mask_tensor, _ = smooth_mask(face_mask_tensor.unsqueeze_(0).unsqueeze_(0))
    soft_face_mask_tensor.squeeze_()

    soft_face_mask = soft_face_mask_tensor.cpu().numpy()
    soft_face_mask = soft_face_mask[:, :, np.newaxis]

    result =  swapped_face * soft_face_mask + target * (1 - soft_face_mask)
    result = result[:,:,::-1]# .astype(np.uint8)
    return result

def reverse2wholeimage(b_align_crop_tenor_list,swaped_imgs, mats, crop_size, oriimg, logoclass, save_path = '', \
                    no_simswaplogo = False,pasring_model =None,norm = None, use_mask = False):

    target_image_list = []
    img_mask_list = []
    if use_mask:
        smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=7).cuda()
    else:
        pass

    # print(len(swaped_imgs))
    # print(mats)
    # print(len(b_align_crop_tenor_list))
    for swaped_img, mat ,source_img in zip(swaped_imgs, mats,b_align_crop_tenor_list):
        swaped_img = swaped_img.cpu().detach().numpy().transpose((1, 2, 0))
        img_white = np.full((crop_size,crop_size), 255, dtype=float)

        # inverse the Affine transformation matrix
        mat_rev = np.zeros([2,3])
        div1 = mat[0][0]*mat[1][1]-mat[0][1]*mat[1][0]
        mat_rev[0][0] = mat[1][1]/div1
        mat_rev[0][1] = -mat[0][1]/div1
        mat_rev[0][2] = -(mat[0][2]*mat[1][1]-mat[0][1]*mat[1][2])/div1
        div2 = mat[0][1]*mat[1][0]-mat[0][0]*mat[1][1]
        mat_rev[1][0] = mat[1][0]/div2
        mat_rev[1][1] = -mat[0][0]/div2
        mat_rev[1][2] = -(mat[0][2]*mat[1][0]-mat[0][0]*mat[1][2])/div2

        orisize = (oriimg.shape[1], oriimg.shape[0])
        if use_mask:
            source_img_norm = norm(source_img)
            source_img_512  = F.interpolate(source_img_norm,size=(512,512))
            out = pasring_model(source_img_512)[0]
            parsing = out.squeeze(0).detach().cpu().numpy().argmax(0)
            vis_parsing_anno = parsing.copy().astype(np.uint8)
            tgt_mask = encode_segmentation_rgb(vis_parsing_anno)
            if tgt_mask.sum() >= 5000:
                # face_mask_tensor = tgt_mask[...,0] + tgt_mask[...,1]
                target_mask = cv2.resize(tgt_mask, (crop_size,  crop_size))
                # print(source_img)
                target_image_parsing = postprocess(swaped_img, source_img[0].cpu().detach().numpy().transpose((1, 2, 0)), target_mask,smooth_mask)
                

                target_image = cv2.warpAffine(target_image_parsing, mat_rev, orisize)
                # target_image_parsing = cv2.warpAffine(swaped_img, mat_rev, orisize)
            else:
                target_image = cv2.warpAffine(swaped_img, mat_rev, orisize)[..., ::-1]
        else:
            target_image = cv2.warpAffine(swaped_img, mat_rev, orisize)
        # source_image   = cv2.warpAffine(source_img, mat_rev, orisize)

        img_white = cv2.warpAffine(img_white, mat_rev, orisize)


        img_white[img_white>20] =255

        img_mask = img_white

        # if use_mask:
        #     kernel = np.ones((40,40),np.uint8)
        #     img_mask = cv2.erode(img_mask,kernel,iterations = 1)
        # else:
        kernel = np.ones((40,40),np.uint8)
        img_mask = cv2.erode(img_mask,kernel,iterations = 1)
        kernel_size = (20, 20)
        blur_size = tuple(2*i+1 for i in kernel_size)
        img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)

        # kernel = np.ones((10,10),np.uint8)
        # img_mask = cv2.erode(img_mask,kernel,iterations = 1)



        img_mask /= 255

        img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])

        # pasing mask

        # target_image_parsing = postprocess(target_image, source_image, tgt_mask)

        if use_mask:
            # target_image = np.array(target_image, dtype=np.float) * 255
            target_image = np.array(target_image, dtype=float) * 255

        else:
            target_image = np.array(target_image, dtype=float)[..., ::-1] * 255


        img_mask_list.append(img_mask)
        target_image_list.append(target_image)
        

    # target_image /= 255
    # target_image = 0
    img = np.array(oriimg, dtype=float)
    for img_mask, target_image in zip(img_mask_list, target_image_list):
        img = img_mask * target_image + (1-img_mask) * img
        
    final_img = img.astype(np.uint8)
    if not no_simswaplogo:
        final_img = logoclass.apply_frames(final_img)
    cv2.imwrite(save_path, final_img)