File size: 12,286 Bytes
f884940 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: train.py
# Created Date: Monday December 27th 2021
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Friday, 22nd April 2022 10:49:26 am
# Modified By: Chen Xuanhong
# Copyright (c) 2021 Shanghai Jiao Tong University
#############################################################
import os
import time
import random
import argparse
import numpy as np
import torch
import torch.nn.functional as F
from torch.backends import cudnn
import torch.utils.tensorboard as tensorboard
from util import util
from util.plot import plot_batch
from models.projected_model import fsModel
from data.data_loader_Swapping import GetLoader
def str2bool(v):
return v.lower() in ('true')
class TrainOptions:
def __init__(self):
self.parser = argparse.ArgumentParser()
self.initialized = False
def initialize(self):
self.parser.add_argument('--name', type=str, default='simswap', help='name of the experiment. It decides where to store samples and models')
self.parser.add_argument('--gpu_ids', default='0')
self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
self.parser.add_argument('--isTrain', type=str2bool, default='True')
# input/output sizes
self.parser.add_argument('--batchSize', type=int, default=4, help='input batch size')
# for displays
self.parser.add_argument('--use_tensorboard', type=str2bool, default='False')
# for training
self.parser.add_argument('--dataset', type=str, default="/path/to/VGGFace2", help='path to the face swapping dataset')
self.parser.add_argument('--continue_train', type=str2bool, default='False', help='continue training: load the latest model')
self.parser.add_argument('--load_pretrain', type=str, default='./checkpoints/simswap224_test', help='load the pretrained model from the specified location')
self.parser.add_argument('--which_epoch', type=str, default='10000', help='which epoch to load? set to latest to use latest cached model')
self.parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc')
self.parser.add_argument('--niter', type=int, default=10000, help='# of iter at starting learning rate')
self.parser.add_argument('--niter_decay', type=int, default=10000, help='# of iter to linearly decay learning rate to zero')
self.parser.add_argument('--beta1', type=float, default=0.0, help='momentum term of adam')
self.parser.add_argument('--lr', type=float, default=0.0004, help='initial learning rate for adam')
self.parser.add_argument('--Gdeep', type=str2bool, default='False')
# for discriminators
self.parser.add_argument('--lambda_feat', type=float, default=10.0, help='weight for feature matching loss')
self.parser.add_argument('--lambda_id', type=float, default=30.0, help='weight for id loss')
self.parser.add_argument('--lambda_rec', type=float, default=10.0, help='weight for reconstruction loss')
self.parser.add_argument("--Arc_path", type=str, default='arcface_model/arcface_checkpoint.tar', help="run ONNX model via TRT")
self.parser.add_argument("--total_step", type=int, default=1000000, help='total training step')
self.parser.add_argument("--log_frep", type=int, default=200, help='frequence for printing log information')
self.parser.add_argument("--sample_freq", type=int, default=1000, help='frequence for sampling')
self.parser.add_argument("--model_freq", type=int, default=10000, help='frequence for saving the model')
self.isTrain = True
def parse(self, save=True):
if not self.initialized:
self.initialize()
self.opt = self.parser.parse_args()
self.opt.isTrain = self.isTrain # train or test
args = vars(self.opt)
print('------------ Options -------------')
for k, v in sorted(args.items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
# save to the disk
if self.opt.isTrain:
expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name)
util.mkdirs(expr_dir)
if save and not self.opt.continue_train:
file_name = os.path.join(expr_dir, 'opt.txt')
with open(file_name, 'wt') as opt_file:
opt_file.write('------------ Options -------------\n')
for k, v in sorted(args.items()):
opt_file.write('%s: %s\n' % (str(k), str(v)))
opt_file.write('-------------- End ----------------\n')
return self.opt
if __name__ == '__main__':
opt = TrainOptions().parse()
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
sample_path = os.path.join(opt.checkpoints_dir, opt.name, 'samples')
if not os.path.exists(sample_path):
os.makedirs(sample_path)
log_path = os.path.join(opt.checkpoints_dir, opt.name, 'summary')
if not os.path.exists(log_path):
os.makedirs(log_path)
if opt.continue_train:
try:
start_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int)
except:
start_epoch, epoch_iter = 1, 0
print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter))
else:
start_epoch, epoch_iter = 1, 0
os.environ['CUDA_VISIBLE_DEVICES'] = str(opt.gpu_ids)
print("GPU used : ", str(opt.gpu_ids))
cudnn.benchmark = True
model = fsModel()
model.initialize(opt)
#####################################################
if opt.use_tensorboard:
tensorboard_writer = tensorboard.SummaryWriter(log_path)
logger = tensorboard_writer
log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
with open(log_name, "a") as log_file:
now = time.strftime("%c")
log_file.write('================ Training Loss (%s) ================\n' % now)
optimizer_G, optimizer_D = model.optimizer_G, model.optimizer_D
loss_avg = 0
refresh_count = 0
imagenet_std = torch.Tensor([0.229, 0.224, 0.225]).view(3,1,1)
imagenet_mean = torch.Tensor([0.485, 0.456, 0.406]).view(3,1,1)
train_loader = GetLoader(opt.dataset,opt.batchSize,8,1234)
randindex = [i for i in range(opt.batchSize)]
random.shuffle(randindex)
if not opt.continue_train:
start = 0
else:
start = int(opt.which_epoch)
total_step = opt.total_step
import datetime
print("Start to train at %s"%(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')))
from util.logo_class import logo_class
logo_class.print_start_training()
model.netD.feature_network.requires_grad_(False)
# Training Cycle
for step in range(start, total_step):
model.netG.train()
for interval in range(2):
random.shuffle(randindex)
src_image1, src_image2 = train_loader.next()
if step%2 == 0:
img_id = src_image2
else:
img_id = src_image2[randindex]
img_id_112 = F.interpolate(img_id,size=(112,112), mode='bicubic')
latent_id = model.netArc(img_id_112)
latent_id = F.normalize(latent_id, p=2, dim=1)
if interval:
img_fake = model.netG(src_image1, latent_id)
gen_logits,_ = model.netD(img_fake.detach(), None)
loss_Dgen = (F.relu(torch.ones_like(gen_logits) + gen_logits)).mean()
real_logits,_ = model.netD(src_image2,None)
loss_Dreal = (F.relu(torch.ones_like(real_logits) - real_logits)).mean()
loss_D = loss_Dgen + loss_Dreal
optimizer_D.zero_grad()
loss_D.backward()
optimizer_D.step()
else:
# model.netD.requires_grad_(True)
img_fake = model.netG(src_image1, latent_id)
# G loss
gen_logits,feat = model.netD(img_fake, None)
loss_Gmain = (-gen_logits).mean()
img_fake_down = F.interpolate(img_fake, size=(112,112), mode='bicubic')
latent_fake = model.netArc(img_fake_down)
latent_fake = F.normalize(latent_fake, p=2, dim=1)
loss_G_ID = (1 - model.cosin_metric(latent_fake, latent_id)).mean()
real_feat = model.netD.get_feature(src_image1)
feat_match_loss = model.criterionFeat(feat["3"],real_feat["3"])
loss_G = loss_Gmain + loss_G_ID * opt.lambda_id + feat_match_loss * opt.lambda_feat
if step%2 == 0:
#G_Rec
loss_G_Rec = model.criterionRec(img_fake, src_image1) * opt.lambda_rec
loss_G += loss_G_Rec
optimizer_G.zero_grad()
loss_G.backward()
optimizer_G.step()
############## Display results and errors ##########
### print out errors
# Print out log info
if (step + 1) % opt.log_frep == 0:
# errors = {k: v.data.item() if not isinstance(v, int) else v for k, v in loss_dict.items()}
errors = {
"G_Loss":loss_Gmain.item(),
"G_ID":loss_G_ID.item(),
"G_Rec":loss_G_Rec.item(),
"G_feat_match":feat_match_loss.item(),
"D_fake":loss_Dgen.item(),
"D_real":loss_Dreal.item(),
"D_loss":loss_D.item()
}
if opt.use_tensorboard:
for tag, value in errors.items():
logger.add_scalar(tag, value, step)
message = '( step: %d, ) ' % (step)
for k, v in errors.items():
message += '%s: %.3f ' % (k, v)
print(message)
with open(log_name, "a") as log_file:
log_file.write('%s\n' % message)
### display output images
if (step + 1) % opt.sample_freq == 0:
model.netG.eval()
with torch.no_grad():
imgs = list()
zero_img = (torch.zeros_like(src_image1[0,...]))
imgs.append(zero_img.cpu().numpy())
save_img = ((src_image1.cpu())* imagenet_std + imagenet_mean).numpy()
for r in range(opt.batchSize):
imgs.append(save_img[r,...])
arcface_112 = F.interpolate(src_image2,size=(112,112), mode='bicubic')
id_vector_src1 = model.netArc(arcface_112)
id_vector_src1 = F.normalize(id_vector_src1, p=2, dim=1)
for i in range(opt.batchSize):
imgs.append(save_img[i,...])
image_infer = src_image1[i, ...].repeat(opt.batchSize, 1, 1, 1)
img_fake = model.netG(image_infer, id_vector_src1).cpu()
img_fake = img_fake * imagenet_std
img_fake = img_fake + imagenet_mean
img_fake = img_fake.numpy()
for j in range(opt.batchSize):
imgs.append(img_fake[j,...])
print("Save test data")
imgs = np.stack(imgs, axis = 0).transpose(0,2,3,1)
plot_batch(imgs, os.path.join(sample_path, 'step_'+str(step+1)+'.jpg'))
### save latest model
if (step+1) % opt.model_freq==0:
print('saving the latest model (steps %d)' % (step+1))
model.save(step+1)
np.savetxt(iter_path, (step+1, total_step), delimiter=',', fmt='%d')
wandb.finish() |