File size: 2,644 Bytes
f884940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

import cv2
import torch
import fractions
import numpy as np
from PIL import Image
import torch.nn.functional as F
from torchvision import transforms
from models.models import create_model
from options.test_options import TestOptions


def lcm(a, b): return abs(a * b) / fractions.gcd(a, b) if a and b else 0

transformer = transforms.Compose([
        transforms.ToTensor(),
        #transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

transformer_Arcface = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

detransformer = transforms.Compose([
        transforms.Normalize([0, 0, 0], [1/0.229, 1/0.224, 1/0.225]),
        transforms.Normalize([-0.485, -0.456, -0.406], [1, 1, 1])
    ])
if __name__ == '__main__':
    opt = TestOptions().parse()

    start_epoch, epoch_iter = 1, 0

    torch.nn.Module.dump_patches = True
    model = create_model(opt)
    model.eval()

    with torch.no_grad():
        
        pic_a = opt.pic_a_path
        img_a = Image.open(pic_a).convert('RGB')
        img_a = transformer_Arcface(img_a)
        img_id = img_a.view(-1, img_a.shape[0], img_a.shape[1], img_a.shape[2])

        pic_b = opt.pic_b_path

        img_b = Image.open(pic_b).convert('RGB')
        img_b = transformer(img_b)
        img_att = img_b.view(-1, img_b.shape[0], img_b.shape[1], img_b.shape[2])

        # convert numpy to tensor
        img_id = img_id.cuda()
        img_att = img_att.cuda()

        #create latent id
        img_id_downsample = F.interpolate(img_id, size=(112,112))
        latend_id = model.netArc(img_id_downsample)
        latend_id = latend_id.detach().to('cpu')
        latend_id = latend_id/np.linalg.norm(latend_id,axis=1,keepdims=True)
        latend_id = latend_id.to('cuda')


        ############## Forward Pass ######################
        img_fake = model(img_id, img_att, latend_id, latend_id, True)


        for i in range(img_id.shape[0]):
            if i == 0:
                row1 = img_id[i]
                row2 = img_att[i]
                row3 = img_fake[i]
            else:
                row1 = torch.cat([row1, img_id[i]], dim=2)
                row2 = torch.cat([row2, img_att[i]], dim=2)
                row3 = torch.cat([row3, img_fake[i]], dim=2)

        #full = torch.cat([row1, row2, row3], dim=1).detach()
        full = row3.detach()
        full = full.permute(1, 2, 0)
        output = full.to('cpu')
        output = np.array(output)
        output = output[..., ::-1]

        output = output*255

        cv2.imwrite(opt.output_path + 'result.jpg', output)