File size: 9,728 Bytes
f884940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
from torch.autograd import Variable
from .base_model import BaseModel
from . import networks

class SpecificNorm(nn.Module):
    def __init__(self, epsilon=1e-8):
        """
            @notice: avoid in-place ops.
            https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3
        """
        super(SpecificNorm, self).__init__()
        self.mean = np.array([0.485, 0.456, 0.406])
        self.mean = torch.from_numpy(self.mean).float().cuda()
        self.mean = self.mean.view([1, 3, 1, 1])

        self.std = np.array([0.229, 0.224, 0.225])
        self.std = torch.from_numpy(self.std).float().cuda()
        self.std = self.std.view([1, 3, 1, 1])

    def forward(self, x):
        mean = self.mean.expand([1, 3, x.shape[2], x.shape[3]])
        std = self.std.expand([1, 3, x.shape[2], x.shape[3]])

        x = (x - mean) / std

        return x

class fsModel(BaseModel):
    def name(self):
        return 'fsModel'

    def init_loss_filter(self, use_gan_feat_loss, use_vgg_loss):
        flags = (True, use_gan_feat_loss, use_vgg_loss, True, True, True, True, True)

        def loss_filter(g_gan, g_gan_feat, g_vgg, g_id, g_rec, g_mask, d_real, d_fake):
            return [l for (l, f) in zip((g_gan, g_gan_feat, g_vgg, g_id, g_rec, g_mask, d_real, d_fake), flags) if f]

        return loss_filter

    def initialize(self, opt):
        BaseModel.initialize(self, opt)
        if opt.resize_or_crop != 'none' or not opt.isTrain:  # when training at full res this causes OOM
            torch.backends.cudnn.benchmark = True
        self.isTrain = opt.isTrain

        device = torch.device("cuda:0")

        if opt.crop_size == 224:
            from .fs_networks import Generator_Adain_Upsample, Discriminator
        elif opt.crop_size == 512:
            from .fs_networks_512 import Generator_Adain_Upsample, Discriminator

        # Generator network
        self.netG = Generator_Adain_Upsample(input_nc=3, output_nc=3, latent_size=512, n_blocks=9, deep=False)
        self.netG.to(device)

        # Id network
        netArc_checkpoint = opt.Arc_path
        netArc_checkpoint = torch.load(netArc_checkpoint, map_location=torch.device("cpu"))
        self.netArc = netArc_checkpoint
        self.netArc = self.netArc.to(device)
        self.netArc.eval()

        if not self.isTrain:
            pretrained_path = '' if not self.isTrain else opt.load_pretrain
            self.load_network(self.netG, 'G', opt.which_epoch, pretrained_path)
            return

        # Discriminator network
        if opt.gan_mode == 'original':
            use_sigmoid = True
        else:
            use_sigmoid = False
        self.netD1 = Discriminator(input_nc=3, use_sigmoid=use_sigmoid)
        self.netD2 = Discriminator(input_nc=3, use_sigmoid=use_sigmoid)
        self.netD1.to(device)
        self.netD2.to(device)

        #
        self.spNorm =SpecificNorm()
        self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)

        # load networks
        if opt.continue_train or opt.load_pretrain:
            pretrained_path = '' if not self.isTrain else opt.load_pretrain
            # print (pretrained_path)
            self.load_network(self.netG, 'G', opt.which_epoch, pretrained_path)
            self.load_network(self.netD1, 'D1', opt.which_epoch, pretrained_path)
            self.load_network(self.netD2, 'D2', opt.which_epoch, pretrained_path)



        if self.isTrain:
            # define loss functions
            self.loss_filter = self.init_loss_filter(not opt.no_ganFeat_loss, not opt.no_vgg_loss)

            self.criterionGAN = networks.GANLoss(opt.gan_mode, tensor=self.Tensor, opt=self.opt)
            self.criterionFeat = nn.L1Loss()
            self.criterionRec = nn.L1Loss()

            # Names so we can breakout loss
            self.loss_names = self.loss_filter('G_GAN', 'G_GAN_Feat', 'G_VGG', 'G_ID', 'G_Rec', 'D_GP',
                                               'D_real', 'D_fake')

           # initialize optimizers

            # optimizer G
            params = list(self.netG.parameters())
            self.optimizer_G = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.999))

            # optimizer D
            params = list(self.netD1.parameters()) + list(self.netD2.parameters())
            self.optimizer_D = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.999))

    def _gradinet_penalty_D(self, netD, img_att, img_fake):
        # interpolate sample
        bs = img_fake.shape[0]
        alpha = torch.rand(bs, 1, 1, 1).expand_as(img_fake).cuda()
        interpolated = Variable(alpha * img_att + (1 - alpha) * img_fake, requires_grad=True)
        pred_interpolated = netD.forward(interpolated)
        pred_interpolated = pred_interpolated[-1]

        # compute gradients
        grad = torch.autograd.grad(outputs=pred_interpolated,
                                   inputs=interpolated,
                                   grad_outputs=torch.ones(pred_interpolated.size()).cuda(),
                                   retain_graph=True,
                                   create_graph=True,
                                   only_inputs=True)[0]

        # penalize gradients
        grad = grad.view(grad.size(0), -1)
        grad_l2norm = torch.sqrt(torch.sum(grad ** 2, dim=1))
        loss_d_gp = torch.mean((grad_l2norm - 1) ** 2)

        return loss_d_gp

    def cosin_metric(self, x1, x2):
        #return np.dot(x1, x2) / (np.linalg.norm(x1) * np.linalg.norm(x2))
        return torch.sum(x1 * x2, dim=1) / (torch.norm(x1, dim=1) * torch.norm(x2, dim=1))

    def forward(self, img_id, img_att, latent_id, latent_att, for_G=False):
        loss_D_fake, loss_D_real, loss_D_GP = 0, 0, 0
        loss_G_GAN, loss_G_GAN_Feat, loss_G_VGG, loss_G_ID, loss_G_Rec = 0,0,0,0,0

        img_fake = self.netG.forward(img_att, latent_id)
        if not self.isTrain:
            return img_fake
        img_fake_downsample = self.downsample(img_fake)
        img_att_downsample = self.downsample(img_att)



        # D_Fake
        fea1_fake = self.netD1.forward(img_fake.detach())
        fea2_fake = self.netD2.forward(img_fake_downsample.detach())
        pred_fake = [fea1_fake, fea2_fake]
        loss_D_fake = self.criterionGAN(pred_fake, False, for_discriminator=True)


        # D_Feal
        fea1_real = self.netD1.forward(img_att)
        fea2_real = self.netD2.forward(img_att_downsample)
        pred_real = [fea1_real, fea2_real]
        fea_real = [fea1_real, fea2_real]
        loss_D_real = self.criterionGAN(pred_real, True, for_discriminator=True)
        #print('=====================D_Real========================')

        # D_GP

        loss_D_GP = 0

        # G_GAN
        fea1_fake = self.netD1.forward(img_fake)
        fea2_fake = self.netD2.forward(img_fake_downsample)
        #pred_fake = [fea1_fake[-1], fea2_fake[-1]]
        pred_fake = [fea1_fake, fea2_fake]
        fea_fake = [fea1_fake, fea2_fake]
        loss_G_GAN = self.criterionGAN(pred_fake, True, for_discriminator=False)

        # GAN feature matching loss
        n_layers_D = 4
        num_D = 2
        if not self.opt.no_ganFeat_loss:
            feat_weights = 4.0 / (n_layers_D + 1)
            D_weights = 1.0 / num_D
            for i in range(num_D):
                for j in range(0, len(fea_fake[i]) - 1):
                    loss_G_GAN_Feat += D_weights * feat_weights * \
                                       self.criterionFeat(fea_fake[i][j],
                                                          fea_real[i][j].detach()) * self.opt.lambda_feat


        #G_ID
        img_fake_down = F.interpolate(img_fake, size=(112,112))
        img_fake_down = self.spNorm(img_fake_down)
        latent_fake = self.netArc(img_fake_down)
        loss_G_ID = (1 - self.cosin_metric(latent_fake, latent_id))
        #print('=====================G_ID========================')
        #print(loss_G_ID)

        #G_Rec
        loss_G_Rec = self.criterionRec(img_fake, img_att) * self.opt.lambda_rec

        # Only return the fake_B image if necessary to save BW
        return [self.loss_filter(loss_G_GAN, loss_G_GAN_Feat, loss_G_VGG, loss_G_ID, loss_G_Rec, loss_D_GP, loss_D_real, loss_D_fake),
                img_fake]


    def save(self, which_epoch):
        self.save_network(self.netG, 'G', which_epoch, self.gpu_ids)
        self.save_network(self.netD1, 'D1', which_epoch, self.gpu_ids)
        self.save_network(self.netD2, 'D2', which_epoch, self.gpu_ids)
        '''if self.gen_features:
            self.save_network(self.netE, 'E', which_epoch, self.gpu_ids)'''

    def update_fixed_params(self):
        # after fixing the global generator for a number of iterations, also start finetuning it
        params = list(self.netG.parameters())
        if self.gen_features:
            params += list(self.netE.parameters())
        self.optimizer_G = torch.optim.Adam(params, lr=self.opt.lr, betas=(self.opt.beta1, 0.999))
        if self.opt.verbose:
            print('------------ Now also finetuning global generator -----------')

    def update_learning_rate(self):
        lrd = self.opt.lr / self.opt.niter_decay
        lr = self.old_lr - lrd
        for param_group in self.optimizer_D.param_groups:
            param_group['lr'] = lr
        for param_group in self.optimizer_G.param_groups:
            param_group['lr'] = lr
        if self.opt.verbose:
            print('update learning rate: %f -> %f' % (self.old_lr, lr))
        self.old_lr = lr