metadata
license: other
language:
- en
pipeline_tag: text-generation
inference: false
tags:
- transformers
- gguf
- imatrix
- Asclepius-Llama2-13B
Quantizations of https://huggingface.co/starmpcc/Asclepius-Llama2-13B
Inference Clients/UIs
From original readme
How to Get Started with the Model
prompt = """You are an intelligent clinical languge model.
Below is a snippet of patient's discharge summary and a following instruction from healthcare professional.
Write a response that appropriately completes the instruction.
The response should provide the accurate answer to the instruction, while being concise.
[Discharge Summary Begin]
{note}
[Discharge Summary End]
[Instruction Begin]
{question}
[Instruction End]
"""
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("starmpcc/Asclepius-Llama2-13B", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("starmpcc/Asclepius-Llama13-7B")
note = "This is a sample note"
question = "What is the diagnosis?"
model_input = prompt.format(note=note, question=question)
input_ids = tokenizer(model_input, return_tensors="pt").input_ids
output = model.generate(input_ids)
print(tokenizer.decode(output[0]))