duynhm's picture
Initial commit
be2715b
raw
history blame
2.94 kB
from . import base
from . import functional as F
from ..base.modules import Activation
class IoU(base.Metric):
__name__ = 'iou_score'
def __init__(self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs):
super().__init__(**kwargs)
self.eps = eps
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return F.iou(
y_pr, y_gt,
eps=self.eps,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)
class Fscore(base.Metric):
def __init__(self, beta=1, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs):
super().__init__(**kwargs)
self.eps = eps
self.beta = beta
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return F.f_score(
y_pr, y_gt,
eps=self.eps,
beta=self.beta,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)
class Accuracy(base.Metric):
def __init__(self, threshold=0.5, activation=None, ignore_channels=None, **kwargs):
super().__init__(**kwargs)
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return F.accuracy(
y_pr, y_gt,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)
class Recall(base.Metric):
def __init__(self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs):
super().__init__(**kwargs)
self.eps = eps
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return F.recall(
y_pr, y_gt,
eps=self.eps,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)
class Precision(base.Metric):
def __init__(self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs):
super().__init__(**kwargs)
self.eps = eps
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return F.precision(
y_pr, y_gt,
eps=self.eps,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)