Ber Zoidberg
Model save
b445297
metadata
license: apache-2.0
base_model: NousResearch/Yarn-Mistral-7b-128k
tags:
  - generated_from_trainer
model-index:
  - name: unraveled-7b-dpo-lora
    results: []

unraveled-7b-dpo-lora

This model is a fine-tuned version of NousResearch/Yarn-Mistral-7b-128k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5895
  • Rewards/chosen: 0.1439
  • Rewards/rejected: -0.1833
  • Rewards/accuracies: 0.6880
  • Rewards/margins: 0.3272
  • Logps/rejected: -221.8329
  • Logps/chosen: -266.1414
  • Logits/rejected: -1.9675
  • Logits/chosen: -2.0859

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 256
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6313 1.0 242 0.6318 0.1228 -0.0304 0.6600 0.1532 -220.3036 -266.3521 -1.9863 -2.1062
0.6013 2.0 484 0.5983 0.1484 -0.1334 0.6760 0.2819 -221.3338 -266.0959 -1.9723 -2.0914
0.5889 3.0 726 0.5895 0.1439 -0.1833 0.6880 0.3272 -221.8329 -266.1414 -1.9675 -2.0859

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1