File size: 30,499 Bytes
f9d46fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Total net additions to property and equipment for AWS in 2023 amounted
    to $24,843 million.
  sentences:
  - What technological feature helps protect digital transactions in the Visa Token
    Service?
  - What was the total net addition to property and equipment for AWS in the year
    2023?
  - By what proportion did net cash used in financing activities increase from 2022
    to 2023?
- source_sentence: 'Leases generally contain one or more of the following options,
    which the Company can exercise at the end of the initial term: (a) renew the lease
    for a defined number of years at the then-fair market rental rate or rate stipulated
    in the lease agreement; (b) purchase the property at the then-fair market value
    or purchase price stated in the agreement; or (c) a right of first refusal in
    the event of a third-party offer.'
  sentences:
  - What are the requirements for health insurers and group health plans in providing
    cost estimates to consumers?
  - What options does the company have at the end of the lease term for their leased
    properties?
  - How much did the company incur in intangible amortization costs related to the
    eOne acquisition in 2022?
- source_sentence: We recorded an acquisition termination cost of $1.35 billion in
    fiscal year 2023 reflecting the write-off of the prepayment provided at signing.
  sentences:
  - How much did NVIDIA record as an acquisition termination cost in fiscal year 2023
    related to the Arm Share Purchase Agreement?
  - What is included in the consolidated financial statements and accompanying notes
    mentioned in Part IV, Item 15(a)(1) of the Annual Report on Form 10-K?
  - What risks are associated with projecting the effectiveness of internal controls
    into future periods as mentioned?
- source_sentence: Item 8 is labeled as Financial Statements and Supplementary Data.
  sentences:
  - What was the percentage of trading days in 2023 where trading-related revenue
    was recorded as positive?
  - How is the discount rate for the Family Dollar goodwill impairment evaluation
    determined?
  - What is the title of Item 8 in the financial document?
- source_sentence: Details about legal proceedings are included in Part II, Item 8,
    "Financial Statements and Supplementary Data" of the Annual Report on Form 10-K,
    under the caption "Legal Proceedings".
  sentences:
  - Where can details about legal proceedings be located in an Annual Report on Form
    10-K?
  - How many stores did AutoZone operate in the United States as of August 26, 2023?
  - In the context of Hewlett Packard Enterprise's recent financial discussions, what
    factors are expected to impact their operational costs and revenue growth moving
    forward?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7071428571428572
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8414285714285714
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.88
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9314285714285714
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7071428571428572
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28047619047619043
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.176
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09314285714285712
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7071428571428572
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8414285714285714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.88
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9314285714285714
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8207437059171859
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7853486394557823
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7881907906804949
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.6957142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8385714285714285
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8757142857142857
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.93
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6957142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2795238095238095
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17514285714285713
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09299999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6957142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8385714285714285
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8757142857142857
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.93
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8149439460863356
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7780714285714285
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.781021025356189
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.6885714285714286
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.83
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8742857142857143
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9142857142857143
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6885714285714286
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27666666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17485714285714282
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09142857142857141
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6885714285714286
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.83
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8742857142857143
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9142857142857143
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8060991379418679
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7710873015873015
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7751792513774886
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6771428571428572
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8214285714285714
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8614285714285714
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9142857142857143
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6771428571428572
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2738095238095238
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17228571428571426
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09142857142857141
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6771428571428572
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8214285714285714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8614285714285714
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9142857142857143
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7979494993398927
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7605890022675734
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7639633810343436
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6557142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7871428571428571
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8271428571428572
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8714285714285714
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6557142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2623809523809524
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1654285714285714
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08714285714285713
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6557142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7871428571428571
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8271428571428572
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8714285714285714
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7664083634078753
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7326604308390022
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7375736792740525
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("dustyatx/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'Details about legal proceedings are included in Part II, Item 8, "Financial Statements and Supplementary Data" of the Annual Report on Form 10-K, under the caption "Legal Proceedings".',
    'Where can details about legal proceedings be located in an Annual Report on Form 10-K?',
    'How many stores did AutoZone operate in the United States as of August 26, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7071     |
| cosine_accuracy@3   | 0.8414     |
| cosine_accuracy@5   | 0.88       |
| cosine_accuracy@10  | 0.9314     |
| cosine_precision@1  | 0.7071     |
| cosine_precision@3  | 0.2805     |
| cosine_precision@5  | 0.176      |
| cosine_precision@10 | 0.0931     |
| cosine_recall@1     | 0.7071     |
| cosine_recall@3     | 0.8414     |
| cosine_recall@5     | 0.88       |
| cosine_recall@10    | 0.9314     |
| cosine_ndcg@10      | 0.8207     |
| cosine_mrr@10       | 0.7853     |
| **cosine_map@100**  | **0.7882** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.6957    |
| cosine_accuracy@3   | 0.8386    |
| cosine_accuracy@5   | 0.8757    |
| cosine_accuracy@10  | 0.93      |
| cosine_precision@1  | 0.6957    |
| cosine_precision@3  | 0.2795    |
| cosine_precision@5  | 0.1751    |
| cosine_precision@10 | 0.093     |
| cosine_recall@1     | 0.6957    |
| cosine_recall@3     | 0.8386    |
| cosine_recall@5     | 0.8757    |
| cosine_recall@10    | 0.93      |
| cosine_ndcg@10      | 0.8149    |
| cosine_mrr@10       | 0.7781    |
| **cosine_map@100**  | **0.781** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6886     |
| cosine_accuracy@3   | 0.83       |
| cosine_accuracy@5   | 0.8743     |
| cosine_accuracy@10  | 0.9143     |
| cosine_precision@1  | 0.6886     |
| cosine_precision@3  | 0.2767     |
| cosine_precision@5  | 0.1749     |
| cosine_precision@10 | 0.0914     |
| cosine_recall@1     | 0.6886     |
| cosine_recall@3     | 0.83       |
| cosine_recall@5     | 0.8743     |
| cosine_recall@10    | 0.9143     |
| cosine_ndcg@10      | 0.8061     |
| cosine_mrr@10       | 0.7711     |
| **cosine_map@100**  | **0.7752** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.6771    |
| cosine_accuracy@3   | 0.8214    |
| cosine_accuracy@5   | 0.8614    |
| cosine_accuracy@10  | 0.9143    |
| cosine_precision@1  | 0.6771    |
| cosine_precision@3  | 0.2738    |
| cosine_precision@5  | 0.1723    |
| cosine_precision@10 | 0.0914    |
| cosine_recall@1     | 0.6771    |
| cosine_recall@3     | 0.8214    |
| cosine_recall@5     | 0.8614    |
| cosine_recall@10    | 0.9143    |
| cosine_ndcg@10      | 0.7979    |
| cosine_mrr@10       | 0.7606    |
| **cosine_map@100**  | **0.764** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6557     |
| cosine_accuracy@3   | 0.7871     |
| cosine_accuracy@5   | 0.8271     |
| cosine_accuracy@10  | 0.8714     |
| cosine_precision@1  | 0.6557     |
| cosine_precision@3  | 0.2624     |
| cosine_precision@5  | 0.1654     |
| cosine_precision@10 | 0.0871     |
| cosine_recall@1     | 0.6557     |
| cosine_recall@3     | 0.7871     |
| cosine_recall@5     | 0.8271     |
| cosine_recall@10    | 0.8714     |
| cosine_ndcg@10      | 0.7664     |
| cosine_mrr@10       | 0.7327     |
| **cosine_map@100**  | **0.7376** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                           |
  | details | <ul><li>min: 8 tokens</li><li>mean: 45.94 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.7 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                            | anchor                                                                                                                                                           |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The company must continuously strengthen its capabilities in marketing and innovation to compete in a digital environment and maintain brand loyalty and marketallability. In addition, it is increasing its investments in e-commerce to support retail and meal delivery services, offering more package sizes that are fit-for-purpose for online sales and shifting more consumer and trade promotions to digital.</code> | <code>What strategies is the company employing to enhance its competitiveness in a digital environment?</code>                                                   |
  | <code>Fedflowing expanded or relocated its hub and linehaul network, FedEx Ground also introduced new safety technologies, set new driver standards, and made operational enhancements for safer handling of heavy items.</code>                                                                                                                                                                                                    | <code>What specific changes has FedEx Ground made for vehicle and driver safety?</code>                                                                          |
  | <code>The debt financing, which is being provided by a syndicate of Chinese financial institutions, contains certain covenants and a maximum borrowing limit of ¥29.7 billion RMB (approximately $4.2 billion).</code>                                                                                                                                                                                                              | <code>What is the maximum borrowing limit of the debt financing provided by the syndicate of Chinese financial institutions for Universal Beijing Resort?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8122     | 10     | 1.5212        | -                      | -                      | -                      | -                     | -                      |
| 0.9746     | 12     | -             | 0.7439                 | 0.7556                 | 0.7670                 | 0.7142                | 0.7717                 |
| 1.6244     | 20     | 0.6418        | -                      | -                      | -                      | -                     | -                      |
| 1.9492     | 24     | -             | 0.7592                 | 0.7743                 | 0.7787                 | 0.7331                | 0.7839                 |
| 2.4365     | 30     | 0.4411        | -                      | -                      | -                      | -                     | -                      |
| 2.9239     | 36     | -             | 0.7623                 | 0.7757                 | 0.7816                 | 0.7365                | 0.7902                 |
| 3.2487     | 40     | 0.3917        | -                      | -                      | -                      | -                     | -                      |
| **3.8985** | **48** | **-**         | **0.764**              | **0.7752**             | **0.781**              | **0.7376**            | **0.7882**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->