File size: 2,050 Bytes
2d5284f 265efbd 2d5284f 265efbd 2d5284f 97c2ad2 2d5284f 97c2ad2 2d5284f 97c2ad2 2d5284f 97c2ad2 2d5284f 97c2ad2 2d5284f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
license: mit
base_model: vinai/bartpho-syllable-base
tags:
- text2text-generation
- generated_from_trainer
metrics:
- sacrebleu
model-index:
- name: vinh-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vinh-test
This model is a fine-tuned version of [vinai/bartpho-syllable-base](https://huggingface.co/vinai/bartpho-syllable-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3488
- Model Preparation Time: 0.0071
- Sacrebleu: 92.9401
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 48
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 48
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Sacrebleu |
|:-------------:|:------:|:----:|:---------------:|:----------------------:|:---------:|
| No log | 0.9231 | 3 | 0.7367 | 0.0071 | 89.5419 |
| No log | 1.8462 | 6 | 0.6013 | 0.0071 | 89.5419 |
| No log | 2.7692 | 9 | 0.4542 | 0.0071 | 89.5419 |
| No log | 4.0 | 13 | 0.3624 | 0.0071 | 92.9401 |
| No log | 4.6154 | 15 | 0.3488 | 0.0071 | 92.9401 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3
|