File size: 1,814 Bytes
2d5284f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: mit
base_model: vinai/bartpho-syllable
tags:
- text2text-generation
- generated_from_trainer
metrics:
- sacrebleu
model-index:
- name: vinh-test
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vinh-test

This model is a fine-tuned version of [vinai/bartpho-syllable](https://huggingface.co/vinai/bartpho-syllable) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0182
- Sacrebleu: 97.4671

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 24
- eval_batch_size: 96
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Sacrebleu |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| No log        | 1.0   | 179  | 0.0532          | 95.2231   |
| No log        | 2.0   | 358  | 0.0352          | 96.7782   |
| 0.1135        | 3.0   | 537  | 0.0195          | 97.1852   |
| 0.1135        | 4.0   | 716  | 0.0195          | 97.5108   |
| 0.1135        | 5.0   | 895  | 0.0182          | 97.4671   |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3