File size: 1,933 Bytes
bb28cd1
 
fe33920
 
 
 
 
 
 
 
 
 
 
bb28cd1
fe33920
 
 
 
 
 
 
 
d964a38
 
 
 
 
fe33920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d964a38
 
 
 
 
fe33920
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: roberta-base_stress_classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base_stress_classification

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0389
- Accuracy: 0.9938
- F1: 0.9938
- Precision: 0.9938
- Recall: 0.9938

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.2345        | 1.0   | 160  | 0.1980          | 0.9437   | 0.9437 | 0.9449    | 0.9437 |
| 0.2676        | 2.0   | 320  | 0.1086          | 0.9844   | 0.9844 | 0.9848    | 0.9844 |
| 0.0393        | 3.0   | 480  | 0.1011          | 0.9812   | 0.9812 | 0.9816    | 0.9812 |
| 0.1025        | 4.0   | 640  | 0.0389          | 0.9938   | 0.9938 | 0.9938    | 0.9938 |
| 0.0004        | 5.0   | 800  | 0.0654          | 0.9875   | 0.9875 | 0.9876    | 0.9875 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0