Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: tiiuae/falcon-7b
bf16: auto
chat_template: llama3
cosine_min_lr_ratio: 0.1
data_processes: 4
dataset_prepared_path: null
datasets:
- data_files:
  - e2b65f96ec370f38_train_data.json
  ds_type: json
  format: custom
  num_proc: 4
  path: /workspace/input_data/e2b65f96ec370f38_train_data.json
  streaming: true
  type:
    field_input: head
    field_instruction: relation
    field_output: tail
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: balanced
do_eval: true
early_stopping_patience: 1
eval_batch_size: 1
eval_sample_packing: false
eval_steps: 25
evaluation_strategy: steps
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: true
hub_model_id: dsakerkwq/fec35cb4-e7b4-4427-a005-8f8abcb2d743
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 75GB
  1: 75GB
  2: 75GB
  3: 75GB
max_steps: 50
micro_batch_size: 2
mixed_precision: bf16
mlflow_experiment_name: /tmp/e2b65f96ec370f38_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 2048
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: false
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: null
wandb_mode: online
wandb_name: fec35cb4-e7b4-4427-a005-8f8abcb2d743
wandb_project: Public_TuningSN
wandb_runid: fec35cb4-e7b4-4427-a005-8f8abcb2d743
warmup_ratio: 0.04
weight_decay: 0.01
xformers_attention: null

fec35cb4-e7b4-4427-a005-8f8abcb2d743

This model is a fine-tuned version of tiiuae/falcon-7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7916

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
77.2536 0.0181 1 6.3799
29.2401 0.4520 25 2.1591
26.1235 0.9040 50 1.7916

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for 1-lock/fec35cb4-e7b4-4427-a005-8f8abcb2d743

Base model

tiiuae/falcon-7b
Adapter
(342)
this model