File size: 10,908 Bytes
a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 77e4af1 733f7f4 7a0d4b3 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 cf66620 a9b8fe6 733f7f4 cf66620 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 a9b8fe6 733f7f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
# /// script
# requires-python = "==3.10"
# dependencies = ["torch==2.7.0", "triton", "numpy", "kernels"]
# [tool.uv.sources]
# kernels = { git = "https://github.com/huggingface/kernels.git" }
# ///
import time
import torch
from kernels import get_kernel, get_local_kernel
from pathlib import Path
from torch.nn import functional as F
import numpy as np
import sys
# Set seeds and deterministic flags for reproducibility
torch.manual_seed(42)
torch.cuda.manual_seed(42)
torch.cuda.manual_seed_all(42)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.set_printoptions(precision=4)
load_method = 3 # 1: sym, 2: local, 3: hf
if load_method == 1:
sys.path.insert(0, "./torch-ext")
import yamoe
elif load_method == 2:
yamoe = get_local_kernel(Path("result"), "yamoe")
elif load_method == 3:
yamoe = get_kernel("drbh/yamoe", revision="v0.2.0")
binned_experts_ref = yamoe.vendored.yamoe_ref.binned_experts_ref
GptOssExperts = yamoe.vendored.gpt_oss_mlp.GptOssExperts
# Configuration
batch_size, seq_len, hidden_dim = 4, 1024, 2880
num_experts, top_k = 8, 2
# Create routing weights
logits = torch.randn(batch_size, seq_len, num_experts)
probs = F.softmax(logits, dim=-1)
weights, indices = torch.topk(probs, top_k, dim=-1)
batch_seq = batch_size * seq_len
routing_weights = torch.zeros(batch_seq, num_experts, dtype=weights.dtype)
flat_indices, flat_weights = indices.reshape(-1, top_k), weights.reshape(-1, top_k)
batch_indices = torch.arange(batch_seq).unsqueeze(1).expand(-1, top_k)
routing_weights[batch_indices, flat_indices] = flat_weights
# Create model tensors
hidden_states = torch.randn(batch_size, seq_len, hidden_dim).cuda()
# gate_up_proj = torch.randn(num_experts, hidden_dim, 2 * hidden_dim).cuda()
gate_up_proj_bias = torch.zeros(num_experts, 2 * hidden_dim).cuda()
# down_proj = torch.randn(num_experts, hidden_dim, hidden_dim).cuda()
down_proj_bias = torch.zeros(num_experts, hidden_dim).cuda()
# routing_weights = routing_weights.cuda()
router_indices = flat_indices.cuda()
gate_up_proj = torch.empty(num_experts, hidden_dim, 2 * hidden_dim, device="cuda")
down_proj = torch.empty(num_experts, hidden_dim, hidden_dim, device="cuda")
torch.nn.init.trunc_normal_(gate_up_proj, std=0.02)
torch.nn.init.trunc_normal_(down_proj, std=0.02)
routing_weights = routing_weights.to(dtype=torch.float32, device="cuda")
expert_capacity = batch_seq * top_k // num_experts * 2
# Warmup
for _ in range(5):
_ = yamoe.experts(
hidden_states.view(-1, hidden_dim),
router_indices,
routing_weights.view(-1, num_experts),
gate_up_proj,
gate_up_proj_bias,
down_proj,
down_proj_bias,
expert_capacity,
num_experts,
top_k,
)
# Benchmark
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
start = time.perf_counter()
with torch.no_grad():
output = yamoe.experts(
hidden_states.view(-1, hidden_dim),
router_indices,
routing_weights.view(-1, num_experts),
gate_up_proj,
gate_up_proj_bias,
down_proj,
down_proj_bias,
expert_capacity,
num_experts,
top_k,
)
torch.cuda.synchronize()
elapsed_ms = (time.perf_counter() - start) * 1e3
peak_mem_mb = torch.cuda.max_memory_allocated() / (1024 * 1024)
# Store kernel results
kernel_output = output.clone()
kernel_time = elapsed_ms
kernel_memory = peak_mem_mb
## OPTIONAL
# Compare to reference implementation
config = type("Config", (), {})()
config.hidden_size = hidden_dim
config.intermediate_size = 4 * hidden_dim
config.num_local_experts = num_experts
model = GptOssExperts(config)
# set the weights and biases from above to the reference model
model.gate_up_proj.data = gate_up_proj
model.gate_up_proj_bias.data = gate_up_proj_bias
model.down_proj.data = down_proj
model.down_proj_bias.data = down_proj_bias
model = model.cuda()
model.eval()
# Warmup
for _ in range(5):
_ = model(hidden_states, router_indices, routing_weights)
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
start = time.perf_counter()
with torch.no_grad():
ref_output = model(hidden_states, router_indices, routing_weights)
torch.cuda.synchronize()
elapsed_ms = (time.perf_counter() - start) * 1e3
peak_mem_mb = torch.cuda.max_memory_allocated() / (1024 * 1024)
# Store reference results
ref_time = elapsed_ms
ref_memory = peak_mem_mb
# Reshape reference output to match kernel output
ref_output_reshaped = ref_output.view(kernel_output.shape)
# Test yamoe_ref implementation
expert_capacity = batch_seq * top_k // num_experts * 2 # Generous capacity
# Warmup
for _ in range(5):
_ = binned_experts_ref(
hidden_states,
router_indices,
routing_weights,
gate_up_proj,
gate_up_proj_bias,
down_proj,
down_proj_bias,
expert_capacity,
)
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
start = time.perf_counter()
with torch.no_grad():
yamoe_ref_output = binned_experts_ref(
hidden_states,
router_indices,
routing_weights,
gate_up_proj,
gate_up_proj_bias,
down_proj,
down_proj_bias,
expert_capacity,
)
torch.cuda.synchronize()
yamoe_ref_time = (time.perf_counter() - start) * 1e3
yamoe_ref_memory = torch.cuda.max_memory_allocated() / (1024 * 1024)
# Reshape yamoe_ref output to match kernel output
yamoe_ref_output_reshaped = yamoe_ref_output.view(kernel_output.shape)
# Calculate similarity metrics between kernel and reference
mse_kernel_ref = torch.nn.functional.mse_loss(kernel_output, ref_output_reshaped).item()
mae_kernel_ref = torch.nn.functional.l1_loss(kernel_output, ref_output_reshaped).item()
# Cosine similarity
kernel_flat = kernel_output.view(-1)
ref_flat = ref_output_reshaped.view(-1)
yamoe_ref_flat = yamoe_ref_output_reshaped.view(-1)
cosine_sim_kernel_ref = torch.nn.functional.cosine_similarity(
kernel_flat.unsqueeze(0), ref_flat.unsqueeze(0)
).item()
# Relative error (L2 norm of difference / L2 norm of reference)
diff_norm_kernel_ref = torch.norm(kernel_output - ref_output_reshaped).item()
ref_norm = torch.norm(ref_output_reshaped).item()
rel_error_kernel_ref = diff_norm_kernel_ref / ref_norm if ref_norm > 0 else float("inf")
# Max absolute difference
max_abs_diff_kernel_ref = torch.max(
torch.abs(kernel_output - ref_output_reshaped)
).item()
# Calculate similarity metrics between kernel and yamoe_ref
mse_kernel_yamoe = torch.nn.functional.mse_loss(
kernel_output, yamoe_ref_output_reshaped
).item()
mae_kernel_yamoe = torch.nn.functional.l1_loss(
kernel_output, yamoe_ref_output_reshaped
).item()
cosine_sim_kernel_yamoe = torch.nn.functional.cosine_similarity(
kernel_flat.unsqueeze(0), yamoe_ref_flat.unsqueeze(0)
).item()
diff_norm_kernel_yamoe = torch.norm(kernel_output - yamoe_ref_output_reshaped).item()
yamoe_ref_norm = torch.norm(yamoe_ref_output_reshaped).item()
rel_error_kernel_yamoe = (
diff_norm_kernel_yamoe / yamoe_ref_norm if yamoe_ref_norm > 0 else float("inf")
)
max_abs_diff_kernel_yamoe = torch.max(
torch.abs(kernel_output - yamoe_ref_output_reshaped)
).item()
# Calculate similarity metrics between reference and yamoe_ref
mse_ref_yamoe = torch.nn.functional.mse_loss(
ref_output_reshaped, yamoe_ref_output_reshaped
).item()
mae_ref_yamoe = torch.nn.functional.l1_loss(
ref_output_reshaped, yamoe_ref_output_reshaped
).item()
cosine_sim_ref_yamoe = torch.nn.functional.cosine_similarity(
ref_flat.unsqueeze(0), yamoe_ref_flat.unsqueeze(0)
).item()
diff_norm_ref_yamoe = torch.norm(ref_output_reshaped - yamoe_ref_output_reshaped).item()
rel_error_ref_yamoe = (
diff_norm_ref_yamoe / yamoe_ref_norm if yamoe_ref_norm > 0 else float("inf")
)
max_abs_diff_ref_yamoe = torch.max(
torch.abs(ref_output_reshaped - yamoe_ref_output_reshaped)
).item()
# Print comparison table
print("\n" + "=" * 110)
print(
f"{'METRIC':<20} {'KERNEL':<15} {'REFERENCE':<15} {'YAMOE_REF':<15} {'KERNEL SPEEDUP':<20} {'REF SPEEDUP':<15}"
)
print("=" * 110)
print(
f"{'Sum':<20} {kernel_output.sum().item():<15.4f} {ref_output_reshaped.sum().item():<15.4f} {yamoe_ref_output_reshaped.sum().item():<15.4f} {'N/A':<20} {'N/A':<15}"
)
print(
f"{'Min':<20} {kernel_output.min().item():<15.4f} {ref_output_reshaped.min().item():<15.4f} {yamoe_ref_output_reshaped.min().item():<15.4f} {'N/A':<20} {'N/A':<15}"
)
print(
f"{'Max':<20} {kernel_output.max().item():<15.4f} {ref_output_reshaped.max().item():<15.4f} {yamoe_ref_output_reshaped.max().item():<15.4f} {'N/A':<20} {'N/A':<15}"
)
print(
f"{'Norm (L2)':<20} {kernel_output.norm().item():<15.4f} {ref_output_reshaped.norm().item():<15.4f} {yamoe_ref_output_reshaped.norm().item():<15.4f} {'N/A':<20} {'N/A':<15}"
)
print(
f"{'Std':<20} {kernel_output.std().item():<15.4f} {ref_output_reshaped.std().item():<15.4f} {yamoe_ref_output_reshaped.std().item():<15.4f} {'N/A':<20} {'N/A':<15}"
)
print("-" * 110)
print(
f"{'Time (ms)':<20} {kernel_time:<15.3f} {ref_time:<15.3f} {yamoe_ref_time:<15.3f} {yamoe_ref_time / kernel_time:<20.2f}x {yamoe_ref_time / ref_time:<15.2f}x"
)
print(
f"{'Memory (MB)':<20} {kernel_memory:<15.2f} {ref_memory:<15.2f} {yamoe_ref_memory:<15.2f} {yamoe_ref_memory / kernel_memory:<20.2f}x {yamoe_ref_memory / ref_memory:<15.2f}x"
)
print("-" * 110)
print("SIMILARITY METRICS (vs KERNEL)")
print("-" * 110)
print(
f"{'METRIC':<20} {'KERNEL vs REF':<20} {'KERNEL vs YAMOE_REF':<20} {'REF vs YAMOE_REF':<20}"
)
print("-" * 110)
print(
f"{'MSE':<20} {mse_kernel_ref:<20.6e} {mse_kernel_yamoe:<20.6e} {mse_ref_yamoe:<20.6e}"
)
print(
f"{'MAE':<20} {mae_kernel_ref:<20.6e} {mae_kernel_yamoe:<20.6e} {mae_ref_yamoe:<20.6e}"
)
print(
f"{'Cosine Similarity':<20} {cosine_sim_kernel_ref:<20.6f} {cosine_sim_kernel_yamoe:<20.6f} {cosine_sim_ref_yamoe:<20.6f}"
)
print(
f"{'Relative Error':<20} {rel_error_kernel_ref:<20.6e} {rel_error_kernel_yamoe:<20.6e} {rel_error_ref_yamoe:<20.6e}"
)
print(
f"{'Max Abs Diff':<20} {max_abs_diff_kernel_ref:<20.6e} {max_abs_diff_kernel_yamoe:<20.6e} {max_abs_diff_ref_yamoe:<20.6e}"
)
print("-" * 110)
print("FIRST 10 ELEMENTS COMPARISON")
print("-" * 110)
# Get first N elements as numpy arrays for nice display
N = 10
kernel_first_10 = kernel_flat[:N].cpu().numpy()
ref_first_10 = ref_flat[:N].cpu().numpy()
yamoe_ref_first_10 = yamoe_ref_flat[:N].cpu().numpy()
diff_kernel_ref = kernel_first_10 - ref_first_10
diff_kernel_yamoe = kernel_first_10 - yamoe_ref_first_10
print(
f"{'INDEX':<5} {'KERNEL':<12} {'REFERENCE':<12} {'YAMOE_REF':<12} {'K-R DIFF':<12} {'K-Y DIFF':<12}"
)
print("-" * 70)
for i in range(N):
print(
f"{i:<5} {kernel_first_10[i]:<12.6f} {ref_first_10[i]:<12.6f} {yamoe_ref_first_10[i]:<12.6f} {diff_kernel_ref[i]:<12.6f} {diff_kernel_yamoe[i]:<12.6f}"
)
print("=" * 110)
|