File size: 3,632 Bytes
2962af9 bbc8894 2962af9 bbc8894 2962af9 cecb4ac 4a3dfbd cecb4ac 2962af9 4a3dfbd 2962af9 4a3dfbd 2962af9 4a3dfbd 2962af9 4a3dfbd 7fa2ce0 cecb4ac 4a3dfbd f895a04 cecb4ac f895a04 4a3dfbd c82191b 4a3dfbd c82191b 4a3dfbd d73e97d 4a3dfbd cfe2e76 cecb4ac 4a3dfbd cecb4ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: HunyuanImage-2.1
license: other
license_name: tencent-hunyuan-community
license_link: https://github.com/Tencent-Hunyuan/HunyuanImage-2.1/blob/master/LICENSE
language:
- en
- zh
tags:
- text-to-image
- comfyui
- diffusers
pipeline_tag: text-to-image
extra_gated_eu_disallowed: true
---
<div align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/63473b59e5c0717e6737b872/5DZez8C7TeFwRn3FcKDix.png" alt="HunyuanImage-2.1 Banner" />
<h1> HunyuanImage-2.1 fp8 e4m3fn </h1>
<h2>An Efficient Diffusion Model for High-Resolution (2K) Text-to-Image Generation</h2>
</div>
</div>
<div align="center">
<a href="https://github.com/Tencent-Hunyuan/HunyuanImage-2.1" target="_blank"><img src="https://img.shields.io/badge/Code-black.svg?logo=github" height="22px"></a>
<a href="https://huggingface.co/spaces/tencent/HunyuanImage-2.1" target="_blank">
<img src="https://img.shields.io/badge/Demo%20Page-blue" height="22px"></a>
<a href="https://huggingface.co/tencent/HunyuanImage-2.1" target="_blank"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Models-d96902.svg" height="22px"></a>
<a href="#" target="_blank"><img src="https://img.shields.io/badge/Report-Coming%20Soon-blue" height="22px"></a>
<a href="https://hunyuan-promptenhancer.github.io/" target="_blank"><img src="https://img.shields.io/badge/PromptEnhancer-bb8a2e.svg?logo=github" height="22px"></a>
<a href="https://x.com/TencentHunyuan" target="_blank"><img src="https://img.shields.io/badge/Hunyuan-black.svg?logo=x" height="22px"></a>
</div>
---
## **Performance on RTX 5090**
> When using **HunyuanImage-2.1** with the **quantized encoder** + **quantized base model**,
> the VRAM usage on an **NVIDIA RTX 5090** typically ranges between **26 GB and 30 GB** with average
> 16 second inference time depending on resolution, batch size, and prompt complexity.
> **Reports that it works on 16gb VRAM GPU's**
⚠ **Important Note:**
The **refiner** is still not implemented and is **not ready for use in ComfyUI**.
However, the **distilled model now works in ComfyUI** with recommended settings of **8 steps / 1.5-2.5 CFG**.
---
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/63473b59e5c0717e6737b872/auZ_xmiKPw0QdBYUrTLn-.png" alt="Image1"/>
</p>
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/63473b59e5c0717e6737b872/qod1zCPWjzOZSNcOWx49-.png" alt="Image2"/>
</p>


---
## **Download Quantized Model (FP8 e4m3fn)**
[**Download hunyuanimage2.1_fp8_e4m3fn.safetensors**](https://huggingface.co/drbaph/HunyuanImage-2.1_fp8/blob/main/hunyuanimage2.1_fp8_e4m3fn.safetensors)
---
### **Workflow Notes**
- **Model:** HunyuanImage-2.1
- **Mode:** Quantized Encoder + Quantized Base Model
- **VRAM Usage:** ~26GB–30GB on RTX 5090
- **Resolution Tested:** 2K (2048×2048)
- **Frameworks:** ComfyUI & Diffusers
- **Optimisations** Works with Patch Sage Attention + Lazycache / TeaCache ✅
- **Distilled Model:** ✅ Now works in ComfyUI with **8 steps / 1.5-2.5 CFG**
- **Refiner:** ❌ Still not implemented, **not available in ComfyUI**
- **License:** [tencent-hunyuan-community](https://github.com/Tencent-Hunyuan/HunyuanImage-2.1/blob/master/LICENSE)
---
<p align="center">
🚀 **Optimized for High-Resolution, Memory-Efficient Text-to-Image Generation**
</p> |