Nicolas Draber
commited on
Commit
•
6d061ac
1
Parent(s):
ad60bff
Import space pipeline file
Browse files
app.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import streamlit as st
|
5 |
+
import tensorflow as tf
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
+
|
8 |
+
# most of this code has been obtained from Datature's prediction script
|
9 |
+
# https://github.com/datature/resources/blob/main/scripts/bounding_box/prediction.py
|
10 |
+
|
11 |
+
st.set_option('deprecation.showfileUploaderEncoding', False)
|
12 |
+
|
13 |
+
@st.cache(allow_output_mutation=True)
|
14 |
+
def load_model():
|
15 |
+
return tf.saved_model.load('./saved_model')
|
16 |
+
|
17 |
+
def load_label_map(label_map_path):
|
18 |
+
"""
|
19 |
+
Reads label map in the format of .pbtxt and parse into dictionary
|
20 |
+
Args:
|
21 |
+
label_map_path: the file path to the label_map
|
22 |
+
Returns:
|
23 |
+
dictionary with the format of {label_index: {'id': label_index, 'name': label_name}}
|
24 |
+
"""
|
25 |
+
label_map = {}
|
26 |
+
|
27 |
+
with open(label_map_path, "r") as label_file:
|
28 |
+
for line in label_file:
|
29 |
+
if "id" in line:
|
30 |
+
label_index = int(line.split(":")[-1])
|
31 |
+
label_name = next(label_file).split(":")[-1].strip().strip('"')
|
32 |
+
label_map[label_index] = {"id": label_index, "name": label_name}
|
33 |
+
return label_map
|
34 |
+
|
35 |
+
def predict_class(image, model):
|
36 |
+
image = tf.cast(image, tf.float32)
|
37 |
+
image = tf.image.resize(image, [150, 150])
|
38 |
+
image = np.expand_dims(image, axis = 0)
|
39 |
+
return model.predict(image)
|
40 |
+
|
41 |
+
def plot_boxes_on_img(color_map, classes, bboxes, image_origi, origi_shape):
|
42 |
+
for idx, each_bbox in enumerate(bboxes):
|
43 |
+
color = color_map[classes[idx]]
|
44 |
+
|
45 |
+
## Draw bounding box
|
46 |
+
cv2.rectangle(
|
47 |
+
image_origi,
|
48 |
+
(int(each_bbox[1] * origi_shape[1]),
|
49 |
+
int(each_bbox[0] * origi_shape[0]),),
|
50 |
+
(int(each_bbox[3] * origi_shape[1]),
|
51 |
+
int(each_bbox[2] * origi_shape[0]),),
|
52 |
+
color,
|
53 |
+
2,
|
54 |
+
)
|
55 |
+
## Draw label background
|
56 |
+
cv2.rectangle(
|
57 |
+
image_origi,
|
58 |
+
(int(each_bbox[1] * origi_shape[1]),
|
59 |
+
int(each_bbox[2] * origi_shape[0]),),
|
60 |
+
(int(each_bbox[3] * origi_shape[1]),
|
61 |
+
int(each_bbox[2] * origi_shape[0] + 15),),
|
62 |
+
color,
|
63 |
+
-1,
|
64 |
+
)
|
65 |
+
## Insert label class & score
|
66 |
+
cv2.putText(
|
67 |
+
image_origi,
|
68 |
+
"Class: {}, Score: {}".format(
|
69 |
+
str(category_index[classes[idx]]["name"]),
|
70 |
+
str(round(scores[idx], 2)),
|
71 |
+
),
|
72 |
+
(int(each_bbox[1] * origi_shape[1]),
|
73 |
+
int(each_bbox[2] * origi_shape[0] + 10),),
|
74 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
75 |
+
0.3,
|
76 |
+
(0, 0, 0),
|
77 |
+
1,
|
78 |
+
cv2.LINE_AA,
|
79 |
+
)
|
80 |
+
return image_origi
|
81 |
+
|
82 |
+
|
83 |
+
# Webpage code starts here
|
84 |
+
|
85 |
+
#TODO change this
|
86 |
+
st.title('Distribution Grid - Belgium - Equipment detection')
|
87 |
+
st.text('made by LabelFlow')
|
88 |
+
st.markdown('## Description about your project')
|
89 |
+
|
90 |
+
with st.spinner('Model is being loaded...'):
|
91 |
+
model = load_model()
|
92 |
+
|
93 |
+
# ask user to upload an image
|
94 |
+
file = st.file_uploader("Upload image", type=["jpg", "png"])
|
95 |
+
|
96 |
+
if file is None:
|
97 |
+
st.text('Waiting for upload...')
|
98 |
+
else:
|
99 |
+
st.text('Running inference...')
|
100 |
+
# open image
|
101 |
+
test_image = Image.open(file).convert("RGB")
|
102 |
+
origi_shape = np.asarray(test_image).shape
|
103 |
+
# resize image to default shape
|
104 |
+
default_shape = 320
|
105 |
+
image_resized = np.array(test_image.resize((default_shape, default_shape)))
|
106 |
+
|
107 |
+
## Load color map
|
108 |
+
category_index = load_label_map("./label_map.pbtxt")
|
109 |
+
|
110 |
+
# TODO Add more colors if there are more classes
|
111 |
+
# color of each label. check label_map.pbtxt to check the index for each class
|
112 |
+
color_map = {
|
113 |
+
1: [69, 109, 42],
|
114 |
+
2: [107, 46, 186],
|
115 |
+
3: [9, 35, 183],
|
116 |
+
4: [27, 1, 30],
|
117 |
+
5: [0, 0, 0],
|
118 |
+
6: [5, 6, 7],
|
119 |
+
7: [11, 5, 12],
|
120 |
+
8: [209, 205, 211],
|
121 |
+
9: [17, 17, 17],
|
122 |
+
10: [101, 242, 50],
|
123 |
+
11: [51, 204, 170],
|
124 |
+
12: [106, 0, 132],
|
125 |
+
13: [7, 111, 153],
|
126 |
+
14: [8, 10, 9],
|
127 |
+
15: [234, 250, 252],
|
128 |
+
16: [58, 68, 30],
|
129 |
+
17: [24, 178, 117],
|
130 |
+
18: [21, 22, 21],
|
131 |
+
19: [53, 104, 83],
|
132 |
+
20: [12, 5, 10],
|
133 |
+
21: [223, 192, 249],
|
134 |
+
22: [234, 234, 234],
|
135 |
+
23: [119, 68, 221],
|
136 |
+
24: [224, 174, 94],
|
137 |
+
25: [140, 74, 116],
|
138 |
+
26: [90, 102, 1],
|
139 |
+
27: [216, 143, 208]
|
140 |
+
}
|
141 |
+
|
142 |
+
## The model input needs to be a tensor
|
143 |
+
input_tensor = tf.convert_to_tensor(image_resized)
|
144 |
+
## The model expects a batch of images, so add an axis with `tf.newaxis`.
|
145 |
+
input_tensor = input_tensor[tf.newaxis, ...]
|
146 |
+
|
147 |
+
## Feed image into model and obtain output
|
148 |
+
detections_output = model(input_tensor)
|
149 |
+
num_detections = int(detections_output.pop("num_detections"))
|
150 |
+
detections = {key: value[0, :num_detections].numpy() for key, value in detections_output.items()}
|
151 |
+
detections["num_detections"] = num_detections
|
152 |
+
|
153 |
+
## Filter out predictions below threshold
|
154 |
+
# if threshold is higher, there will be fewer predictions
|
155 |
+
# TODO change this number to see how the predictions change
|
156 |
+
confidence_threshold = 0.6
|
157 |
+
indexes = np.where(detections["detection_scores"] > confidence_threshold)
|
158 |
+
|
159 |
+
## Extract predicted bounding boxes
|
160 |
+
bboxes = detections["detection_boxes"][indexes]
|
161 |
+
# there are no predicted boxes
|
162 |
+
if len(bboxes) == 0:
|
163 |
+
st.error('No boxes predicted')
|
164 |
+
# there are predicted boxes
|
165 |
+
else:
|
166 |
+
st.success('Boxes predicted')
|
167 |
+
classes = detections["detection_classes"][indexes].astype(np.int64)
|
168 |
+
scores = detections["detection_scores"][indexes]
|
169 |
+
|
170 |
+
# plot boxes and labels on image
|
171 |
+
image_origi = np.array(Image.fromarray(image_resized).resize((origi_shape[1], origi_shape[0])))
|
172 |
+
image_origi = plot_boxes_on_img(color_map, classes, bboxes, image_origi, origi_shape)
|
173 |
+
|
174 |
+
# show image in web page
|
175 |
+
st.image(Image.fromarray(image_origi), caption="Image with predictions", width=400)
|
176 |
+
st.markdown("### Predicted boxes")
|
177 |
+
for idx in range(len((bboxes))):
|
178 |
+
st.markdown(f"* Class: {str(category_index[classes[idx]]['name'])}, confidence score: {str(round(scores[idx], 2))}")
|