douwekiela
Add evaluation results on lewtun/dog_food dataset (#1)
52a4198
|
raw
history blame
3.13 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
  - lewtun/dog_food
metrics:
  - accuracy
model-index:
  - name: resnet-18-finetuned-dogfood
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: lewtun/dog_food
          type: lewtun/dog_food
          args: lewtun--dog_food
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.896
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: lewtun/dog_food
          type: lewtun/dog_food
          config: lewtun--dog_food
          split: test
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8466666666666667
            verified: true
          - name: Precision Macro
            type: precision
            value: 0.8850127293141284
            verified: true
          - name: Precision Micro
            type: precision
            value: 0.8466666666666667
            verified: true
          - name: Precision Weighted
            type: precision
            value: 0.8939157698241645
            verified: true
          - name: Recall Macro
            type: recall
            value: 0.8555113273379528
            verified: true
          - name: Recall Micro
            type: recall
            value: 0.8466666666666667
            verified: true
          - name: Recall Weighted
            type: recall
            value: 0.8466666666666667
            verified: true
          - name: F1 Macro
            type: f1
            value: 0.8431399312051647
            verified: true
          - name: F1 Micro
            type: f1
            value: 0.8466666666666667
            verified: true
          - name: F1 Weighted
            type: f1
            value: 0.8430272582865614
            verified: true
          - name: loss
            type: loss
            value: 0.3633290231227875
            verified: true
          - name: matthews_correlation
            type: matthews_correlation
            value: 0.7973101366252381
            verified: true

resnet-18-finetuned-dogfood

This model is a fine-tuned version of microsoft/resnet-18 on the lewtun/dog_food dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2991
  • Accuracy: 0.896

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.846 1.0 16 0.2662 0.9156

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1