doubledsbv commited on
Commit
93c1d72
1 Parent(s): fc7c55d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +123 -0
README.md ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - llama2
5
+ - deutsch
6
+ - german
7
+ - seedbox
8
+ - awq
9
+ license: llama2
10
+ datasets:
11
+ - seedboxai/multitask_german_examples_32k
12
+ language:
13
+ - de
14
+ - en
15
+ pipeline_tag: text-generation
16
+ ---
17
+
18
+
19
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/645ded34a45b4182d7f5c385/Lu_-yOozdIQLBe4FrmWUI.png)
20
+
21
+
22
+
23
+ # KafkaLM-7B-DARE_TIES-LaserRMT-QLoRA-DPO-v0.5
24
+
25
+ **KafkaLM 7b** is a Mistral 7b model - further pre-trained on a large German dataset from Björn Plüster and LAION. [leo-mistral-hessianai-7b](https://huggingface.co/LeoLM/leo-mistral-hessianai-7b) - which was finetuned on an ensemble of popular high-quality open-source instruction sets (translated from English to German).
26
+
27
+ KafkaLM 7b is a [Seedbox](https://huggingface.co/seedboxai) project trained by [Dennis Dickmann](https://huggingface.co/doubledsbv).
28
+
29
+ **Why Kafka?**
30
+ The models are proficient, yet creative, and have some tendencies to linguistically push boundaries 😊
31
+
32
+
33
+
34
+ ## THE MODEL CAN BE TESTET HERE [Kafka-7B HF Space](https://huggingface.co/spaces/doubledsbv/Kafka-7B-DARE-TIES-QLoRa-LaserRMT-DPO)
35
+
36
+
37
+
38
+ ## Model Details
39
+
40
+ The purpose of releasing the **KafkaLM series** is to contribute to the German AI community with a set of fine-tuned LLMs that are easy to use in everyday applications across a variety of tasks.
41
+
42
+ The main goal was to provide LLMs proficient in German, especially to be used in German-speaking business contexts where English alone is not sufficient.
43
+
44
+
45
+ ## LaerRMT w/ Q-Lora
46
+
47
+ Based on the brilliant work from [laserRMT](https://github.com/cognitivecomputations/laserRMT/) team, I used the SNR implementation for identifying candiate layers to be used for the DPO training.
48
+
49
+ ### Dataset
50
+
51
+ I used a 8k filtered version of the following [seedboxai/multitask_german_examples_32k](https://huggingface.co/datasets/seedboxai/multitask_german_examples_32k)
52
+
53
+ ### Prompt Format
54
+
55
+
56
+ This model follows the subsequent prompt format:
57
+
58
+ ```
59
+ <|system|>
60
+ Du bist ein freundlicher und hilfsbereiter KI-Assistent. Du beantwortest Fragen faktenorientiert und präzise, ohne dabei relevante Fakten auszulassen.</s>
61
+ <|user|>
62
+ Welche Möglichkeiten der energetischen Sanierung habe ich neben Solar und Energiespeicher?</s>
63
+ <|assistant|>
64
+ ```
65
+
66
+
67
+ ```
68
+
69
+ ## 🧩 Configuration
70
+
71
+ ```yaml
72
+ models:
73
+ - model: mistralai/Mistral-7B-v0.1
74
+ # no parameters necessary for base model
75
+ - model: seedboxai/KafkaLM-7B-German-V0.1
76
+ parameters:
77
+ density: 0.65
78
+ weight: 0.50
79
+ - model: mlabonne/Monarch-7B
80
+ parameters:
81
+ density: 0.60
82
+ weight: 0.30
83
+ - model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
84
+ parameters:
85
+ density: 0.60
86
+ weight: 0.20
87
+ merge_method: dare_ties
88
+ base_model: mistralai/Mistral-7B-v0.1
89
+ parameters:
90
+ int8_mask: true
91
+ dtype: bfloat16
92
+ random_seed: 0
93
+ ```
94
+
95
+ ## 💻 Usage
96
+
97
+ ```python
98
+ !pip install -qU transformers accelerate
99
+
100
+ from transformers import AutoTokenizer
101
+ import transformers
102
+ import torch
103
+
104
+ model = "seedboxai/KafkaLM-7B-DARE_TIES-LaserRMT-QLoRA-DPO-v0.5"
105
+ messages = [{"role": "user", "content": "Was ist der Sinn des Lebens?"}]
106
+
107
+ tokenizer = AutoTokenizer.from_pretrained(model)
108
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
109
+ pipeline = transformers.pipeline(
110
+ "text-generation",
111
+ model=model,
112
+ torch_dtype=torch.float16,
113
+ device_map="auto",
114
+ )
115
+
116
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
117
+ print(outputs[0]["generated_text"])
118
+ ```
119
+
120
+ ## Disclaimer
121
+
122
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model.
123
+ This model should only be used for research purposes. The original Llama2 license and all restrictions of datasets used to train this model apply.