LLaMmlein_1B_CoreML / README.md
dotwee's picture
add model
4e6f878
---
datasets:
- togethercomputer/RedPajama-Data-V2
language:
- de
pipeline_tag: text-generation
library_name: coremltools
license: other
tags:
- coreml
- tinyllama
- german-language-model
---
# LLäMmlein 1B CoreML
This repository contains the CoreML version of [LLäMmlein 1B](https://huggingface.co/LSX-UniWue/LLaMmlein_1B), a German language model trained from scratch using the [Tinyllama](https://github.com/jzhang38/TinyLlama) codebase on the German portion of [RedPajama V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2).
## Model Details
- **Model Type**: German Language Model based on TinyLlama architecture
- **Language:** German
- **Framework**: CoreML
- **Original Model:** [LSX-UniWue/LLaMmlein_1B](https://huggingface.co/LSX-UniWue/LLaMmlein_1B)
- **Size:** 1B parameters
- **Format:** CoreML (.mlpackage)
- **Minimum Deployment Target:** iOS 16
- **Compute Units:** ALL (CPU + Neural Engine)
- **Input Sequence Length:** 512 tokens
## Conversion Process
The model was converted from PyTorch to CoreML using the following steps:
```python
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
import coremltools as ct
# Load model and convert to TorchScript
model = AutoModelForCausalLM.from_pretrained("LSX-UniWue/LLaMmlein_1B")
tokenizer = AutoTokenizer.from_pretrained("LSX-UniWue/LLaMmlein_1B")
# Set model to eval mode
model.eval()
# Create example input
text = "Ein Beispieltext"
inputs = tokenizer(text, return_tensors="pt")
# Create a wrapper class for tracing
class ModelWrapper(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, input_ids):
return self.model(input_ids).logits
# Wrap and trace model
wrapped_model = ModelWrapper(model)
traced_model = torch.jit.trace(wrapped_model, inputs.input_ids)
# Convert to CoreML
model_mlpackage = ct.convert(
traced_model,
inputs=[
ct.TensorType(
name="input_ids",
shape=inputs.input_ids.shape,
dtype=np.int32
)
],
source="pytorch",
minimum_deployment_target=ct.target.iOS16,
convert_to="mlprogram",
compute_precision=ct.precision.FLOAT16,
compute_units=ct.ComputeUnit.ALL,
)
model_mlpackage.save("LLaMmlein_1B.mlpackage")
```
## Usage
To use this model on Apple devices:
```swift
import CoreML
// Load the model
let config = MLModelConfiguration()
let model = try LLaMmlein_1B(configuration: config)
// Prepare input
let inputIds = // Your tokenized input as [Int32]
// Make prediction
let prediction = try model.prediction(input_ids: inputIds)
```
## Performance Considerations
- The model is optimized for Apple Neural Engine
- Recommended for iOS 16+ devices
- Best performance achieved with batch size of 1
- Maximum sequence length is set to 512 tokens
## Original Model Information
The original model was trained on the German portion of RedPajama V2. For more details about the base model:
- Visit the [project page](https://www.informatik.uni-wuerzburg.de/datascience/projects/nlp/llammlein/)
- Read the [research paper](arxiv.org/abs/2411.11171)
- Check the [SuperGLEBer benchmark](https://lsx-uniwue.github.io/SuperGLEBer-site/) for evaluation results
## License
This model inherits its license from the original LLäMmlein 1B model.
## Citation
If you use this model, please cite the original work:
```bibtex
@misc{llammlein2024,
title={LLäMmlein: A German Language Model},
author={LSX-UniWue},
year={2024},
publisher={Hugging Face},
journal={Hugging Face Hub},
howpublished={\url{https://huggingface.co/LSX-UniWue/LLaMmlein_1B}},
}
```
For the original model description and evaluation results, see the [original model card](https://huggingface.co/LSX-UniWue/LLaMmlein_1B).