codeX-1.0 / run_clone.py
dorkai's picture
Upload model from GitHub.
b410583
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
from __future__ import absolute_import
import os
import pdb
from models import CloneModel
import logging
import argparse
import math
import numpy as np
from io import open
from tqdm import tqdm
import torch
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from transformers import (AdamW, get_linear_schedule_with_warmup,
RobertaConfig, RobertaModel, RobertaTokenizer,
BartConfig, BartForConditionalGeneration, BartTokenizer,
T5Config, T5ForConditionalGeneration, T5Tokenizer)
import multiprocessing
from sklearn.metrics import recall_score, precision_score, f1_score
import time
from configs import add_args, set_seed
from utils import get_filenames, get_elapse_time, load_and_cache_clone_data
from models import get_model_size
MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer),
't5': (T5Config, T5ForConditionalGeneration, T5Tokenizer),
'codet5': (T5Config, T5ForConditionalGeneration, RobertaTokenizer),
'bart': (BartConfig, BartForConditionalGeneration, BartTokenizer)}
cpu_cont = multiprocessing.cpu_count()
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def evaluate(args, model, eval_examples, eval_data, write_to_pred=False):
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
logits = []
y_trues = []
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Evaluating"):
inputs = batch[0].to(args.device)
labels = batch[1].to(args.device)
with torch.no_grad():
lm_loss, logit = model(inputs, labels)
eval_loss += lm_loss.mean().item()
logits.append(logit.cpu().numpy())
y_trues.append(labels.cpu().numpy())
nb_eval_steps += 1
logits = np.concatenate(logits, 0)
y_trues = np.concatenate(y_trues, 0)
best_threshold = 0.5
y_preds = logits[:, 1] > best_threshold
recall = recall_score(y_trues, y_preds)
precision = precision_score(y_trues, y_preds)
f1 = f1_score(y_trues, y_preds)
result = {
"eval_recall": float(recall),
"eval_precision": float(precision),
"eval_f1": float(f1),
"eval_threshold": best_threshold,
}
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(round(result[key], 4)))
logger.info(" " + "*" * 20)
if write_to_pred:
with open(os.path.join(args.output_dir, "predictions.txt"), 'w') as f:
for example, pred in zip(eval_examples, y_preds):
if pred:
f.write(example.url1 + '\t' + example.url2 + '\t' + '1' + '\n')
else:
f.write(example.url1 + '\t' + example.url2 + '\t' + '0' + '\n')
return result
def main():
parser = argparse.ArgumentParser()
t0 = time.time()
args = add_args(parser)
logger.info(args)
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, cpu count: %d",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), cpu_cont)
args.device = device
set_seed(args)
# Build model
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
model = model_class.from_pretrained(args.model_name_or_path)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name)
model.resize_token_embeddings(32000)
model = CloneModel(model, config, tokenizer, args)
logger.info("Finish loading model [%s] from %s", get_model_size(model), args.model_name_or_path)
if args.load_model_path is not None:
logger.info("Reload model from {}".format(args.load_model_path))
model.load_state_dict(torch.load(args.load_model_path))
model.to(device)
pool = multiprocessing.Pool(cpu_cont)
args.train_filename, args.dev_filename, args.test_filename = get_filenames(args.data_dir, args.task, args.sub_task)
fa = open(os.path.join(args.output_dir, 'summary.log'), 'a+')
if args.do_train:
if args.n_gpu > 1:
# multi-gpu training
model = torch.nn.DataParallel(model)
if args.local_rank in [-1, 0] and args.data_num == -1:
summary_fn = '{}/{}'.format(args.summary_dir, '/'.join(args.output_dir.split('/')[1:]))
tb_writer = SummaryWriter(summary_fn)
# Prepare training data loader
train_examples, train_data = load_and_cache_clone_data(args, args.train_filename, pool, tokenizer, 'train',
is_sample=False)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
num_train_optimization_steps = args.num_train_epochs * len(train_dataloader)
save_steps = max(len(train_dataloader) // 5, 1)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
if args.warmup_steps < 1:
warmup_steps = num_train_optimization_steps * args.warmup_steps
else:
warmup_steps = int(args.warmup_steps)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps,
num_training_steps=num_train_optimization_steps)
# Start training
train_example_num = len(train_data)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", train_example_num)
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Batch num = %d", math.ceil(train_example_num / args.train_batch_size))
logger.info(" Num epoch = %d", args.num_train_epochs)
global_step, best_f1 = 0, 0
not_f1_inc_cnt = 0
is_early_stop = False
for cur_epoch in range(args.start_epoch, int(args.num_train_epochs)):
bar = tqdm(train_dataloader, total=len(train_dataloader), desc="Training")
nb_tr_examples, nb_tr_steps, tr_loss = 0, 0, 0
model.train()
for step, batch in enumerate(bar):
batch = tuple(t.to(device) for t in batch)
source_ids, labels = batch
# pdb.set_trace()
loss, logits = model(source_ids, labels)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
nb_tr_examples += source_ids.size(0)
nb_tr_steps += 1
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
if nb_tr_steps % args.gradient_accumulation_steps == 0:
# Update parameters
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
train_loss = round(tr_loss * args.gradient_accumulation_steps / nb_tr_steps, 4)
bar.set_description("[{}] Train loss {}".format(cur_epoch, round(train_loss, 3)))
if (step + 1) % save_steps == 0 and args.do_eval:
logger.info("***** CUDA.empty_cache() *****")
torch.cuda.empty_cache()
eval_examples, eval_data = load_and_cache_clone_data(args, args.dev_filename, pool, tokenizer,
'valid', is_sample=True)
result = evaluate(args, model, eval_examples, eval_data)
eval_f1 = result['eval_f1']
if args.data_num == -1:
tb_writer.add_scalar('dev_f1', round(eval_f1, 4), cur_epoch)
# save last checkpoint
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last')
if not os.path.exists(last_output_dir):
os.makedirs(last_output_dir)
if True or args.data_num == -1 and args.save_last_checkpoints:
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the last model into %s", output_model_file)
if eval_f1 > best_f1:
not_f1_inc_cnt = 0
logger.info(" Best f1: %s", round(eval_f1, 4))
logger.info(" " + "*" * 20)
fa.write("[%d] Best f1 changed into %.4f\n" % (cur_epoch, round(eval_f1, 4)))
best_f1 = eval_f1
# Save best checkpoint for best ppl
output_dir = os.path.join(args.output_dir, 'checkpoint-best-f1')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.data_num == -1 or True:
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Save the best ppl model into %s", output_model_file)
else:
not_f1_inc_cnt += 1
logger.info("F1 does not increase for %d epochs", not_f1_inc_cnt)
if not_f1_inc_cnt > args.patience:
logger.info("Early stop as f1 do not increase for %d times", not_f1_inc_cnt)
fa.write("[%d] Early stop as not_f1_inc_cnt=%d\n" % (cur_epoch, not_f1_inc_cnt))
is_early_stop = True
break
model.train()
if is_early_stop:
break
logger.info("***** CUDA.empty_cache() *****")
torch.cuda.empty_cache()
if args.local_rank in [-1, 0] and args.data_num == -1:
tb_writer.close()
if args.do_test:
logger.info(" " + "***** Testing *****")
logger.info(" Batch size = %d", args.eval_batch_size)
for criteria in ['best-f1']:
file = os.path.join(args.output_dir, 'checkpoint-{}/pytorch_model.bin'.format(criteria))
logger.info("Reload model from {}".format(file))
model.load_state_dict(torch.load(file))
if args.n_gpu > 1:
# multi-gpu training
model = torch.nn.DataParallel(model)
eval_examples, eval_data = load_and_cache_clone_data(args, args.test_filename, pool, tokenizer, 'test',
False)
result = evaluate(args, model, eval_examples, eval_data, write_to_pred=True)
logger.info(" test_f1=%.4f", result['eval_f1'])
logger.info(" test_prec=%.4f", result['eval_precision'])
logger.info(" test_rec=%.4f", result['eval_recall'])
logger.info(" " + "*" * 20)
fa.write("[%s] test-f1: %.4f, precision: %.4f, recall: %.4f\n" % (
criteria, result['eval_f1'], result['eval_precision'], result['eval_recall']))
if args.res_fn:
with open(args.res_fn, 'a+') as f:
f.write('[Time: {}] {}\n'.format(get_elapse_time(t0), file))
f.write("[%s] f1: %.4f, precision: %.4f, recall: %.4f\n\n" % (
criteria, result['eval_f1'], result['eval_precision'], result['eval_recall']))
fa.close()
if __name__ == "__main__":
main()