|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa). |
|
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned |
|
using a masked language modeling (MLM) loss. |
|
""" |
|
|
|
from __future__ import absolute_import |
|
import os |
|
import pdb |
|
|
|
from models import CloneModel |
|
import logging |
|
import argparse |
|
import math |
|
import numpy as np |
|
from io import open |
|
from tqdm import tqdm |
|
import torch |
|
from torch.utils.tensorboard import SummaryWriter |
|
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler |
|
from torch.utils.data.distributed import DistributedSampler |
|
from transformers import (AdamW, get_linear_schedule_with_warmup, |
|
RobertaConfig, RobertaModel, RobertaTokenizer, |
|
BartConfig, BartForConditionalGeneration, BartTokenizer, |
|
T5Config, T5ForConditionalGeneration, T5Tokenizer) |
|
import multiprocessing |
|
from sklearn.metrics import recall_score, precision_score, f1_score |
|
import time |
|
|
|
from configs import add_args, set_seed |
|
from utils import get_filenames, get_elapse_time, load_and_cache_clone_data |
|
from models import get_model_size |
|
|
|
MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer), |
|
't5': (T5Config, T5ForConditionalGeneration, T5Tokenizer), |
|
'codet5': (T5Config, T5ForConditionalGeneration, RobertaTokenizer), |
|
'bart': (BartConfig, BartForConditionalGeneration, BartTokenizer)} |
|
|
|
cpu_cont = multiprocessing.cpu_count() |
|
|
|
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', |
|
datefmt='%m/%d/%Y %H:%M:%S', |
|
level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def evaluate(args, model, eval_examples, eval_data, write_to_pred=False): |
|
eval_sampler = SequentialSampler(eval_data) |
|
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) |
|
|
|
|
|
logger.info("***** Running evaluation *****") |
|
logger.info(" Num examples = %d", len(eval_examples)) |
|
logger.info(" Batch size = %d", args.eval_batch_size) |
|
eval_loss = 0.0 |
|
nb_eval_steps = 0 |
|
model.eval() |
|
logits = [] |
|
y_trues = [] |
|
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Evaluating"): |
|
inputs = batch[0].to(args.device) |
|
labels = batch[1].to(args.device) |
|
with torch.no_grad(): |
|
lm_loss, logit = model(inputs, labels) |
|
eval_loss += lm_loss.mean().item() |
|
logits.append(logit.cpu().numpy()) |
|
y_trues.append(labels.cpu().numpy()) |
|
nb_eval_steps += 1 |
|
logits = np.concatenate(logits, 0) |
|
y_trues = np.concatenate(y_trues, 0) |
|
best_threshold = 0.5 |
|
|
|
y_preds = logits[:, 1] > best_threshold |
|
recall = recall_score(y_trues, y_preds) |
|
precision = precision_score(y_trues, y_preds) |
|
f1 = f1_score(y_trues, y_preds) |
|
result = { |
|
"eval_recall": float(recall), |
|
"eval_precision": float(precision), |
|
"eval_f1": float(f1), |
|
"eval_threshold": best_threshold, |
|
} |
|
|
|
logger.info("***** Eval results *****") |
|
for key in sorted(result.keys()): |
|
logger.info(" %s = %s", key, str(round(result[key], 4))) |
|
logger.info(" " + "*" * 20) |
|
|
|
if write_to_pred: |
|
with open(os.path.join(args.output_dir, "predictions.txt"), 'w') as f: |
|
for example, pred in zip(eval_examples, y_preds): |
|
if pred: |
|
f.write(example.url1 + '\t' + example.url2 + '\t' + '1' + '\n') |
|
else: |
|
f.write(example.url1 + '\t' + example.url2 + '\t' + '0' + '\n') |
|
|
|
return result |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
t0 = time.time() |
|
args = add_args(parser) |
|
logger.info(args) |
|
|
|
|
|
if args.local_rank == -1 or args.no_cuda: |
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") |
|
args.n_gpu = torch.cuda.device_count() |
|
else: |
|
torch.cuda.set_device(args.local_rank) |
|
device = torch.device("cuda", args.local_rank) |
|
torch.distributed.init_process_group(backend='nccl') |
|
args.n_gpu = 1 |
|
|
|
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, cpu count: %d", |
|
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), cpu_cont) |
|
args.device = device |
|
set_seed(args) |
|
|
|
|
|
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] |
|
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path) |
|
model = model_class.from_pretrained(args.model_name_or_path) |
|
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name) |
|
model.resize_token_embeddings(32000) |
|
|
|
model = CloneModel(model, config, tokenizer, args) |
|
logger.info("Finish loading model [%s] from %s", get_model_size(model), args.model_name_or_path) |
|
|
|
if args.load_model_path is not None: |
|
logger.info("Reload model from {}".format(args.load_model_path)) |
|
model.load_state_dict(torch.load(args.load_model_path)) |
|
|
|
model.to(device) |
|
|
|
pool = multiprocessing.Pool(cpu_cont) |
|
args.train_filename, args.dev_filename, args.test_filename = get_filenames(args.data_dir, args.task, args.sub_task) |
|
fa = open(os.path.join(args.output_dir, 'summary.log'), 'a+') |
|
|
|
if args.do_train: |
|
if args.n_gpu > 1: |
|
|
|
model = torch.nn.DataParallel(model) |
|
if args.local_rank in [-1, 0] and args.data_num == -1: |
|
summary_fn = '{}/{}'.format(args.summary_dir, '/'.join(args.output_dir.split('/')[1:])) |
|
tb_writer = SummaryWriter(summary_fn) |
|
|
|
|
|
train_examples, train_data = load_and_cache_clone_data(args, args.train_filename, pool, tokenizer, 'train', |
|
is_sample=False) |
|
if args.local_rank == -1: |
|
train_sampler = RandomSampler(train_data) |
|
else: |
|
train_sampler = DistributedSampler(train_data) |
|
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) |
|
|
|
num_train_optimization_steps = args.num_train_epochs * len(train_dataloader) |
|
save_steps = max(len(train_dataloader) // 5, 1) |
|
|
|
|
|
no_decay = ['bias', 'LayerNorm.weight'] |
|
optimizer_grouped_parameters = [ |
|
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
'weight_decay': args.weight_decay}, |
|
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} |
|
] |
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) |
|
|
|
if args.warmup_steps < 1: |
|
warmup_steps = num_train_optimization_steps * args.warmup_steps |
|
else: |
|
warmup_steps = int(args.warmup_steps) |
|
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, |
|
num_training_steps=num_train_optimization_steps) |
|
|
|
|
|
train_example_num = len(train_data) |
|
logger.info("***** Running training *****") |
|
logger.info(" Num examples = %d", train_example_num) |
|
logger.info(" Batch size = %d", args.train_batch_size) |
|
logger.info(" Batch num = %d", math.ceil(train_example_num / args.train_batch_size)) |
|
logger.info(" Num epoch = %d", args.num_train_epochs) |
|
|
|
global_step, best_f1 = 0, 0 |
|
not_f1_inc_cnt = 0 |
|
is_early_stop = False |
|
for cur_epoch in range(args.start_epoch, int(args.num_train_epochs)): |
|
bar = tqdm(train_dataloader, total=len(train_dataloader), desc="Training") |
|
nb_tr_examples, nb_tr_steps, tr_loss = 0, 0, 0 |
|
model.train() |
|
for step, batch in enumerate(bar): |
|
batch = tuple(t.to(device) for t in batch) |
|
source_ids, labels = batch |
|
|
|
|
|
loss, logits = model(source_ids, labels) |
|
|
|
if args.n_gpu > 1: |
|
loss = loss.mean() |
|
if args.gradient_accumulation_steps > 1: |
|
loss = loss / args.gradient_accumulation_steps |
|
tr_loss += loss.item() |
|
|
|
nb_tr_examples += source_ids.size(0) |
|
nb_tr_steps += 1 |
|
loss.backward() |
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) |
|
|
|
if nb_tr_steps % args.gradient_accumulation_steps == 0: |
|
|
|
optimizer.step() |
|
optimizer.zero_grad() |
|
scheduler.step() |
|
global_step += 1 |
|
train_loss = round(tr_loss * args.gradient_accumulation_steps / nb_tr_steps, 4) |
|
bar.set_description("[{}] Train loss {}".format(cur_epoch, round(train_loss, 3))) |
|
|
|
if (step + 1) % save_steps == 0 and args.do_eval: |
|
logger.info("***** CUDA.empty_cache() *****") |
|
torch.cuda.empty_cache() |
|
|
|
eval_examples, eval_data = load_and_cache_clone_data(args, args.dev_filename, pool, tokenizer, |
|
'valid', is_sample=True) |
|
|
|
result = evaluate(args, model, eval_examples, eval_data) |
|
eval_f1 = result['eval_f1'] |
|
|
|
if args.data_num == -1: |
|
tb_writer.add_scalar('dev_f1', round(eval_f1, 4), cur_epoch) |
|
|
|
|
|
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last') |
|
if not os.path.exists(last_output_dir): |
|
os.makedirs(last_output_dir) |
|
|
|
if True or args.data_num == -1 and args.save_last_checkpoints: |
|
model_to_save = model.module if hasattr(model, 'module') else model |
|
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin") |
|
torch.save(model_to_save.state_dict(), output_model_file) |
|
logger.info("Save the last model into %s", output_model_file) |
|
|
|
if eval_f1 > best_f1: |
|
not_f1_inc_cnt = 0 |
|
logger.info(" Best f1: %s", round(eval_f1, 4)) |
|
logger.info(" " + "*" * 20) |
|
fa.write("[%d] Best f1 changed into %.4f\n" % (cur_epoch, round(eval_f1, 4))) |
|
best_f1 = eval_f1 |
|
|
|
output_dir = os.path.join(args.output_dir, 'checkpoint-best-f1') |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
if args.data_num == -1 or True: |
|
model_to_save = model.module if hasattr(model, 'module') else model |
|
output_model_file = os.path.join(output_dir, "pytorch_model.bin") |
|
torch.save(model_to_save.state_dict(), output_model_file) |
|
logger.info("Save the best ppl model into %s", output_model_file) |
|
else: |
|
not_f1_inc_cnt += 1 |
|
logger.info("F1 does not increase for %d epochs", not_f1_inc_cnt) |
|
if not_f1_inc_cnt > args.patience: |
|
logger.info("Early stop as f1 do not increase for %d times", not_f1_inc_cnt) |
|
fa.write("[%d] Early stop as not_f1_inc_cnt=%d\n" % (cur_epoch, not_f1_inc_cnt)) |
|
is_early_stop = True |
|
break |
|
|
|
model.train() |
|
if is_early_stop: |
|
break |
|
|
|
logger.info("***** CUDA.empty_cache() *****") |
|
torch.cuda.empty_cache() |
|
|
|
if args.local_rank in [-1, 0] and args.data_num == -1: |
|
tb_writer.close() |
|
|
|
if args.do_test: |
|
logger.info(" " + "***** Testing *****") |
|
logger.info(" Batch size = %d", args.eval_batch_size) |
|
|
|
for criteria in ['best-f1']: |
|
file = os.path.join(args.output_dir, 'checkpoint-{}/pytorch_model.bin'.format(criteria)) |
|
logger.info("Reload model from {}".format(file)) |
|
model.load_state_dict(torch.load(file)) |
|
|
|
if args.n_gpu > 1: |
|
|
|
model = torch.nn.DataParallel(model) |
|
|
|
eval_examples, eval_data = load_and_cache_clone_data(args, args.test_filename, pool, tokenizer, 'test', |
|
False) |
|
|
|
result = evaluate(args, model, eval_examples, eval_data, write_to_pred=True) |
|
logger.info(" test_f1=%.4f", result['eval_f1']) |
|
logger.info(" test_prec=%.4f", result['eval_precision']) |
|
logger.info(" test_rec=%.4f", result['eval_recall']) |
|
logger.info(" " + "*" * 20) |
|
|
|
fa.write("[%s] test-f1: %.4f, precision: %.4f, recall: %.4f\n" % ( |
|
criteria, result['eval_f1'], result['eval_precision'], result['eval_recall'])) |
|
if args.res_fn: |
|
with open(args.res_fn, 'a+') as f: |
|
f.write('[Time: {}] {}\n'.format(get_elapse_time(t0), file)) |
|
f.write("[%s] f1: %.4f, precision: %.4f, recall: %.4f\n\n" % ( |
|
criteria, result['eval_f1'], result['eval_precision'], result['eval_recall'])) |
|
fa.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|