File size: 3,775 Bytes
ba80407 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import attr
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from functools import partial
from dall_e.utils import Conv2d
@attr.s(eq=False, repr=False)
class EncoderBlock(nn.Module):
n_in: int = attr.ib(validator=lambda i, a, x: x >= 1)
n_out: int = attr.ib(validator=lambda i, a, x: x >= 1 and x % 4 ==0)
n_layers: int = attr.ib(validator=lambda i, a, x: x >= 1)
device: torch.device = attr.ib(default=None)
requires_grad: bool = attr.ib(default=False)
def __attrs_post_init__(self) -> None:
super().__init__()
self.n_hid = self.n_out // 4
self.post_gain = 1 / (self.n_layers ** 2)
make_conv = partial(Conv2d, device=self.device, requires_grad=self.requires_grad)
self.id_path = make_conv(self.n_in, self.n_out, 1) if self.n_in != self.n_out else nn.Identity()
self.res_path = nn.Sequential(OrderedDict([
('relu_1', nn.ReLU()),
('conv_1', make_conv(self.n_in, self.n_hid, 3)),
('relu_2', nn.ReLU()),
('conv_2', make_conv(self.n_hid, self.n_hid, 3)),
('relu_3', nn.ReLU()),
('conv_3', make_conv(self.n_hid, self.n_hid, 3)),
('relu_4', nn.ReLU()),
('conv_4', make_conv(self.n_hid, self.n_out, 1)),]))
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.id_path(x) + self.post_gain * self.res_path(x)
@attr.s(eq=False, repr=False)
class Encoder(nn.Module):
group_count: int = 4
n_hid: int = attr.ib(default=256, validator=lambda i, a, x: x >= 64)
n_blk_per_group: int = attr.ib(default=2, validator=lambda i, a, x: x >= 1)
input_channels: int = attr.ib(default=3, validator=lambda i, a, x: x >= 1)
vocab_size: int = attr.ib(default=8192, validator=lambda i, a, x: x >= 512)
device: torch.device = attr.ib(default=torch.device('cpu'))
requires_grad: bool = attr.ib(default=False)
use_mixed_precision: bool = attr.ib(default=True)
def __attrs_post_init__(self) -> None:
super().__init__()
blk_range = range(self.n_blk_per_group)
n_layers = self.group_count * self.n_blk_per_group
make_conv = partial(Conv2d, device=self.device, requires_grad=self.requires_grad)
make_blk = partial(EncoderBlock, n_layers=n_layers, device=self.device,
requires_grad=self.requires_grad)
self.blocks = nn.Sequential(OrderedDict([
('input', make_conv(self.input_channels, 1 * self.n_hid, 7)),
('group_1', nn.Sequential(OrderedDict([
*[(f'block_{i + 1}', make_blk(1 * self.n_hid, 1 * self.n_hid)) for i in blk_range],
('pool', nn.MaxPool2d(kernel_size=2)),
]))),
('group_2', nn.Sequential(OrderedDict([
*[(f'block_{i + 1}', make_blk(1 * self.n_hid if i == 0 else 2 * self.n_hid, 2 * self.n_hid)) for i in blk_range],
('pool', nn.MaxPool2d(kernel_size=2)),
]))),
('group_3', nn.Sequential(OrderedDict([
*[(f'block_{i + 1}', make_blk(2 * self.n_hid if i == 0 else 4 * self.n_hid, 4 * self.n_hid)) for i in blk_range],
('pool', nn.MaxPool2d(kernel_size=2)),
]))),
('group_4', nn.Sequential(OrderedDict([
*[(f'block_{i + 1}', make_blk(4 * self.n_hid if i == 0 else 8 * self.n_hid, 8 * self.n_hid)) for i in blk_range],
]))),
('output', nn.Sequential(OrderedDict([
('relu', nn.ReLU()),
('conv', make_conv(8 * self.n_hid, self.vocab_size, 1, use_float16=False)),
]))),
]))
def forward(self, x: torch.Tensor) -> torch.Tensor:
if len(x.shape) != 4:
raise ValueError(f'input shape {x.shape} is not 4d')
if x.shape[1] != self.input_channels:
raise ValueError(f'input has {x.shape[1]} channels but model built for {self.input_channels}')
if x.dtype != torch.float32:
raise ValueError('input must have dtype torch.float32')
return self.blocks(x)
|