File size: 1,758 Bytes
9a900e5
 
 
 
 
7092ebc
fd22feb
9a900e5
 
66b5125
 
 
 
 
1b3423e
 
 
fd22feb
1b3423e
 
 
fd22feb
12916d7
4276f13
 
fd22feb
4276f13
fd22feb
4276f13
 
6255548
 
 
3a6db82
6255548
 
 
9a900e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import torch
from torchvision import transforms
import av
import logging
import base64

logging.basicConfig(filename='/mnt/data/uploads/logfile-video.log', level=logging.INFO)






def get_video_file(video_base64, video_path):
    # Base64 decoding
    video_bytes = base64.b64decode(video_base64)
    
    # load video file    
    with open(video_path, "wb") as video_file:
        video_file.write(video_bytes)


def read_video(file_path, num_frames=24, target_size=(224, 224)):
    # video_path = "input_video.mp4"
    
    # get_video_file(video_base64, video_path)

    logging.info(f"Reading video from: {file_path}")
    container = av.open(file_path)
    frames = []
    for frame in container.decode(video=0):
        frames.append(frame.to_ndarray(format="rgb24").astype(np.uint8))
    
    sampled_frames = sample_frames(frames, num_frames)
    processed_frames = preprocess_frames(sampled_frames, target_size)
    return processed_frames

def sample_frames(frames, num_frames):
    total_frames = len(frames)
    if total_frames <= num_frames:
        if total_frames < num_frames:
            padding = [np.zeros_like(frames[0]) for _ in range(num_frames - total_frames)]
            frames.extend(padding)
    else:
        indices = np.linspace(0, total_frames - 1, num=num_frames, dtype=int)
        frames = [frames[i] for i in indices]
    return np.array(frames)

def preprocess_frames(frames, target_size):
    transform = transforms.Compose([
        transforms.ToPILImage(),
        transforms.Resize(target_size),
        transforms.ToTensor()
    ])
    processed_frames = [transform(frame) for frame in frames]
    return torch.stack(processed_frames).permute(1, 0, 2, 3).numpy()  # (T, C, H, W) -> (C, T, H, W)