File size: 1,758 Bytes
9a900e5 7092ebc fd22feb 9a900e5 66b5125 1b3423e fd22feb 1b3423e fd22feb 12916d7 4276f13 fd22feb 4276f13 fd22feb 4276f13 6255548 3a6db82 6255548 9a900e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import numpy as np
import torch
from torchvision import transforms
import av
import logging
import base64
logging.basicConfig(filename='/mnt/data/uploads/logfile-video.log', level=logging.INFO)
def get_video_file(video_base64, video_path):
# Base64 decoding
video_bytes = base64.b64decode(video_base64)
# load video file
with open(video_path, "wb") as video_file:
video_file.write(video_bytes)
def read_video(file_path, num_frames=24, target_size=(224, 224)):
# video_path = "input_video.mp4"
# get_video_file(video_base64, video_path)
logging.info(f"Reading video from: {file_path}")
container = av.open(file_path)
frames = []
for frame in container.decode(video=0):
frames.append(frame.to_ndarray(format="rgb24").astype(np.uint8))
sampled_frames = sample_frames(frames, num_frames)
processed_frames = preprocess_frames(sampled_frames, target_size)
return processed_frames
def sample_frames(frames, num_frames):
total_frames = len(frames)
if total_frames <= num_frames:
if total_frames < num_frames:
padding = [np.zeros_like(frames[0]) for _ in range(num_frames - total_frames)]
frames.extend(padding)
else:
indices = np.linspace(0, total_frames - 1, num=num_frames, dtype=int)
frames = [frames[i] for i in indices]
return np.array(frames)
def preprocess_frames(frames, target_size):
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize(target_size),
transforms.ToTensor()
])
processed_frames = [transform(frame) for frame in frames]
return torch.stack(processed_frames).permute(1, 0, 2, 3).numpy() # (T, C, H, W) -> (C, T, H, W)
|