|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: led-base-16384-biolaysum-both-with_references |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# led-base-16384-biolaysum-both-with_references |
|
|
|
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2428 |
|
- Rouge1: 0.4562 |
|
- Rouge2: 0.1529 |
|
- Rougel: 0.2402 |
|
- Rougelsum: 0.2401 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 2.4777 | 0.14 | 1000 | 2.3948 | 0.4284 | 0.1431 | 0.2336 | 0.2336 | |
|
| 2.3863 | 0.27 | 2000 | 2.3211 | 0.4455 | 0.1496 | 0.2380 | 0.2379 | |
|
| 2.3509 | 0.41 | 3000 | 2.2809 | 0.4521 | 0.1521 | 0.2406 | 0.2406 | |
|
| 2.3063 | 0.55 | 4000 | 2.2428 | 0.4562 | 0.1529 | 0.2402 | 0.2401 | |
|
| 2.2754 | 0.69 | 5000 | 2.2222 | 0.4491 | 0.1506 | 0.2393 | 0.2393 | |
|
| 2.268 | 0.82 | 6000 | 2.2113 | 0.4499 | 0.1519 | 0.2406 | 0.2405 | |
|
| 2.2594 | 0.96 | 7000 | 2.1892 | 0.4519 | 0.1515 | 0.2390 | 0.2391 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0 |
|
- Pytorch 1.13.1 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.12.1 |
|
|