File size: 2,097 Bytes
4b72dca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3605d93
 
 
 
 
4b72dca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3605d93
 
 
 
 
 
 
 
 
4b72dca
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: led-base-16384-biolaysum-both-with_references
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# led-base-16384-biolaysum-both-with_references

This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2428
- Rouge1: 0.4562
- Rouge2: 0.1529
- Rougel: 0.2402
- Rougelsum: 0.2401

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 2.4777        | 0.14  | 1000 | 2.3948          | 0.4284 | 0.1431 | 0.2336 | 0.2336    |
| 2.3863        | 0.27  | 2000 | 2.3211          | 0.4455 | 0.1496 | 0.2380 | 0.2379    |
| 2.3509        | 0.41  | 3000 | 2.2809          | 0.4521 | 0.1521 | 0.2406 | 0.2406    |
| 2.3063        | 0.55  | 4000 | 2.2428          | 0.4562 | 0.1529 | 0.2402 | 0.2401    |
| 2.2754        | 0.69  | 5000 | 2.2222          | 0.4491 | 0.1506 | 0.2393 | 0.2393    |
| 2.268         | 0.82  | 6000 | 2.2113          | 0.4499 | 0.1519 | 0.2406 | 0.2405    |
| 2.2594        | 0.96  | 7000 | 2.1892          | 0.4519 | 0.1515 | 0.2390 | 0.2391    |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.12.1