Swin Transformer
Overview
The Swin Transformer was proposed in Swin Transformer: Hierarchical Vision Transformer using Shifted Windows by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
The abstract from the paper is the following:
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with \bold{S}hifted \bold{win}dows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures.
Swin Transformer architecture. Taken from the original paper.This model was contributed by novice03. The Tensorflow version of this model was contributed by amyeroberts. The original code can be found here.
Usage tips
- Swin pads the inputs supporting any input height and width (if divisible by
32
). - Swin can be used as a backbone. When
output_hidden_states = True
, it will output bothhidden_states
andreshaped_hidden_states
. Thereshaped_hidden_states
have a shape of(batch, num_channels, height, width)
rather than(batch_size, sequence_length, num_channels)
.
Resources
A list of official Hugging Face and community (indicated by π) resources to help you get started with Swin Transformer.
- SwinForImageClassification is supported by this example script and notebook.
- See also: Image classification task guide
Besides that:
- SwinForMaskedImageModeling is supported by this example script.
If youβre interested in submitting a resource to be included here, please feel free to open a Pull Request and weβll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
SwinConfig
class transformers.SwinConfig
< source >( image_size = 224 patch_size = 4 num_channels = 3 embed_dim = 96 depths = [2, 2, 6, 2] num_heads = [3, 6, 12, 24] window_size = 7 mlp_ratio = 4.0 qkv_bias = True hidden_dropout_prob = 0.0 attention_probs_dropout_prob = 0.0 drop_path_rate = 0.1 hidden_act = 'gelu' use_absolute_embeddings = False initializer_range = 0.02 layer_norm_eps = 1e-05 encoder_stride = 32 out_features = None out_indices = None **kwargs )
Parameters
- image_size (
int
, optional, defaults to 224) — The size (resolution) of each image. - patch_size (
int
, optional, defaults to 4) — The size (resolution) of each patch. - num_channels (
int
, optional, defaults to 3) — The number of input channels. - embed_dim (
int
, optional, defaults to 96) — Dimensionality of patch embedding. - depths (
list(int)
, optional, defaults to[2, 2, 6, 2]
) — Depth of each layer in the Transformer encoder. - num_heads (
list(int)
, optional, defaults to[3, 6, 12, 24]
) — Number of attention heads in each layer of the Transformer encoder. - window_size (
int
, optional, defaults to 7) — Size of windows. - mlp_ratio (
float
, optional, defaults to 4.0) — Ratio of MLP hidden dimensionality to embedding dimensionality. - qkv_bias (
bool
, optional, defaults toTrue
) — Whether or not a learnable bias should be added to the queries, keys and values. - hidden_dropout_prob (
float
, optional, defaults to 0.0) — The dropout probability for all fully connected layers in the embeddings and encoder. - attention_probs_dropout_prob (
float
, optional, defaults to 0.0) — The dropout ratio for the attention probabilities. - drop_path_rate (
float
, optional, defaults to 0.1) — Stochastic depth rate. - hidden_act (
str
orfunction
, optional, defaults to"gelu"
) — The non-linear activation function (function or string) in the encoder. If string,"gelu"
,"relu"
,"selu"
and"gelu_new"
are supported. - use_absolute_embeddings (
bool
, optional, defaults toFalse
) — Whether or not to add absolute position embeddings to the patch embeddings. - initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - layer_norm_eps (
float
, optional, defaults to 1e-05) — The epsilon used by the layer normalization layers. - encoder_stride (
int
, optional, defaults to 32) — Factor to increase the spatial resolution by in the decoder head for masked image modeling. - out_features (
List[str]
, optional) — If used as backbone, list of features to output. Can be any of"stem"
,"stage1"
,"stage2"
, etc. (depending on how many stages the model has). If unset andout_indices
is set, will default to the corresponding stages. If unset andout_indices
is unset, will default to the last stage. Must be in the same order as defined in thestage_names
attribute. - out_indices (
List[int]
, optional) — If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset andout_features
is set, will default to the corresponding stages. If unset andout_features
is unset, will default to the last stage. Must be in the same order as defined in thestage_names
attribute.
This is the configuration class to store the configuration of a SwinModel. It is used to instantiate a Swin model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Swin microsoft/swin-tiny-patch4-window7-224 architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import SwinConfig, SwinModel
>>> # Initializing a Swin microsoft/swin-tiny-patch4-window7-224 style configuration
>>> configuration = SwinConfig()
>>> # Initializing a model (with random weights) from the microsoft/swin-tiny-patch4-window7-224 style configuration
>>> model = SwinModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
SwinModel
class transformers.SwinModel
< source >( config add_pooling_layer = True use_mask_token = False )
Parameters
- config (SwinConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
- add_pooling_layer (
bool
, optional, defaults toTrue
) — Whether or not to apply pooling layer. - use_mask_token (
bool
, optional, defaults toFalse
) — Whether or not to create and apply mask tokens in the embedding layer.
The bare Swin Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( pixel_values: Optional = None bool_masked_pos: Optional = None head_mask: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None interpolate_pos_encoding: bool = False return_dict: Optional = None ) β transformers.models.swin.modeling_swin.SwinModelOutput
or tuple(torch.FloatTensor)
Parameters
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See ViTImageProcessor.call() for details. - head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - interpolate_pos_encoding (
bool
, optional, defaults toFalse
) — Whether to interpolate the pre-trained position encodings. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - bool_masked_pos (
torch.BoolTensor
of shape(batch_size, num_patches)
, optional) — Boolean masked positions. Indicates which patches are masked (1) and which aren’t (0).
Returns
transformers.models.swin.modeling_swin.SwinModelOutput
or tuple(torch.FloatTensor)
A transformers.models.swin.modeling_swin.SwinModelOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (SwinConfig) and inputs.
-
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
torch.FloatTensor
of shape(batch_size, hidden_size)
, optional, returned whenadd_pooling_layer=True
is passed) β Average pooling of the last layer hidden-state. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each stage) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each stage) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
reshaped_hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each stage) of shape(batch_size, hidden_size, height, width)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions.
The SwinModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoImageProcessor, SwinModel
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> model = SwinModel.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 49, 768]
SwinForMaskedImageModeling
class transformers.SwinForMaskedImageModeling
< source >( config )
Parameters
- config (SwinConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Swin Model with a decoder on top for masked image modeling, as proposed in SimMIM.
Note that we provide a script to pre-train this model on custom data in our examples directory.
This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( pixel_values: Optional = None bool_masked_pos: Optional = None head_mask: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None interpolate_pos_encoding: bool = False return_dict: Optional = None ) β transformers.models.swin.modeling_swin.SwinMaskedImageModelingOutput
or tuple(torch.FloatTensor)
Parameters
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See ViTImageProcessor.call() for details. - head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - interpolate_pos_encoding (
bool
, optional, defaults toFalse
) — Whether to interpolate the pre-trained position encodings. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - bool_masked_pos (
torch.BoolTensor
of shape(batch_size, num_patches)
) — Boolean masked positions. Indicates which patches are masked (1) and which aren’t (0).
Returns
transformers.models.swin.modeling_swin.SwinMaskedImageModelingOutput
or tuple(torch.FloatTensor)
A transformers.models.swin.modeling_swin.SwinMaskedImageModelingOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (SwinConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenbool_masked_pos
is provided) β Masked image modeling (MLM) loss. -
reconstruction (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) β Reconstructed pixel values. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each stage) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each stage) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
reshaped_hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each stage) of shape(batch_size, hidden_size, height, width)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions.
The SwinForMaskedImageModeling forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import AutoImageProcessor, SwinForMaskedImageModeling
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-base-simmim-window6-192")
>>> model = SwinForMaskedImageModeling.from_pretrained("microsoft/swin-base-simmim-window6-192")
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
>>> list(reconstructed_pixel_values.shape)
[1, 3, 192, 192]
SwinForImageClassification
class transformers.SwinForImageClassification
< source >( config )
Parameters
- config (SwinConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Swin Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet.
Note that itβs possible to fine-tune Swin on higher resolution images than the ones it has been trained on, by
setting interpolate_pos_encoding
to True
in the forward of the model. This will interpolate the pre-trained
position embeddings to the higher resolution.
This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( pixel_values: Optional = None head_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None interpolate_pos_encoding: bool = False return_dict: Optional = None ) β transformers.models.swin.modeling_swin.SwinImageClassifierOutput
or tuple(torch.FloatTensor)
Parameters
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See ViTImageProcessor.call() for details. - head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - interpolate_pos_encoding (
bool
, optional, defaults toFalse
) — Whether to interpolate the pre-trained position encodings. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for computing the image classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.models.swin.modeling_swin.SwinImageClassifierOutput
or tuple(torch.FloatTensor)
A transformers.models.swin.modeling_swin.SwinImageClassifierOutput
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (SwinConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Classification (or regression if config.num_labels==1) loss. -
logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) β Classification (or regression if config.num_labels==1) scores (before SoftMax). -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each stage) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each stage) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
reshaped_hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each stage) of shape(batch_size, hidden_size, height, width)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions.
The SwinForImageClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoImageProcessor, SwinForImageClassification
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> model = SwinForImageClassification.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat
TFSwinModel
class transformers.TFSwinModel
< source >( config: SwinConfig add_pooling_layer: bool = True use_mask_token: bool = False **kwargs )
Parameters
- config (SwinConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare Swin Model transformer outputting raw hidden-states without any specific head on top. This model is a Tensorflow keras.layers.Layer sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior.
call
< source >( pixel_values: tf.Tensor | None = None bool_masked_pos: tf.Tensor | None = None head_mask: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False ) β transformers.models.swin.modeling_tf_swin.TFSwinModelOutput
or tuple(tf.Tensor)
Parameters
- pixel_values (
tf.Tensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See ViTImageProcessor.call() for details. - head_mask (
tf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - bool_masked_pos (
tf.Tensor
of shape(batch_size, num_patches)
, optional) — Boolean masked positions. Indicates which patches are masked (1) and which aren’t (0).
Returns
transformers.models.swin.modeling_tf_swin.TFSwinModelOutput
or tuple(tf.Tensor)
A transformers.models.swin.modeling_tf_swin.TFSwinModelOutput
or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (SwinConfig) and inputs.
-
last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
tf.Tensor
of shape(batch_size, hidden_size)
, optional, returned whenadd_pooling_layer=True
is passed) β Average pooling of the last layer hidden-state. -
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each stage) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each stage) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
reshaped_hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each stage) of shape(batch_size, hidden_size, height, width)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions.
The TFSwinModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoImageProcessor, TFSwinModel
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> model = TFSwinModel.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> inputs = image_processor(image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 49, 768]
TFSwinForMaskedImageModeling
class transformers.TFSwinForMaskedImageModeling
< source >( config: SwinConfig )
Parameters
- config (SwinConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Swin Model with a decoder on top for masked image modeling, as proposed in SimMIM. This model is a Tensorflow keras.layers.Layer sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior.
call
< source >( pixel_values: tf.Tensor | None = None bool_masked_pos: tf.Tensor | None = None head_mask: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False ) β transformers.models.swin.modeling_tf_swin.TFSwinMaskedImageModelingOutput
or tuple(tf.Tensor)
Parameters
- pixel_values (
tf.Tensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See ViTImageProcessor.call() for details. - head_mask (
tf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - bool_masked_pos (
tf.Tensor
of shape(batch_size, num_patches)
) — Boolean masked positions. Indicates which patches are masked (1) and which aren’t (0).
Returns
transformers.models.swin.modeling_tf_swin.TFSwinMaskedImageModelingOutput
or tuple(tf.Tensor)
A transformers.models.swin.modeling_tf_swin.TFSwinMaskedImageModelingOutput
or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (SwinConfig) and inputs.
-
loss (
tf.Tensor
of shape(1,)
, optional, returned whenbool_masked_pos
is provided) β Masked image modeling (MLM) loss. -
reconstruction (
tf.Tensor
of shape(batch_size, num_channels, height, width)
) β Reconstructed pixel values. -
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each stage) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each stage) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
reshaped_hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each stage) of shape(batch_size, hidden_size, height, width)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions.
The TFSwinForMaskedImageModeling forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import AutoImageProcessor, TFSwinForMaskedImageModeling
>>> import tensorflow as tf
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> model = TFSwinForMaskedImageModeling.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="tf").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = tf.random.uniform((1, num_patches)) >= 0.5
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
>>> list(reconstructed_pixel_values.shape)
[1, 3, 224, 224]
TFSwinForImageClassification
class transformers.TFSwinForImageClassification
< source >( config: SwinConfig )
Parameters
- config (SwinConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Swin Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet.
This model is a Tensorflow keras.layers.Layer sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior.
call
< source >( pixel_values: tf.Tensor | None = None head_mask: tf.Tensor | None = None labels: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False ) β transformers.models.swin.modeling_tf_swin.TFSwinImageClassifierOutput
or tuple(tf.Tensor)
Parameters
- pixel_values (
tf.Tensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See ViTImageProcessor.call() for details. - head_mask (
tf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - labels (
tf.Tensor
of shape(batch_size,)
, optional) — Labels for computing the image classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.models.swin.modeling_tf_swin.TFSwinImageClassifierOutput
or tuple(tf.Tensor)
A transformers.models.swin.modeling_tf_swin.TFSwinImageClassifierOutput
or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (SwinConfig) and inputs.
-
loss (
tf.Tensor
of shape(1,)
, optional, returned whenlabels
is provided) β Classification (or regression if config.num_labels==1) loss. -
logits (
tf.Tensor
of shape(batch_size, config.num_labels)
) β Classification (or regression if config.num_labels==1) scores (before SoftMax). -
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each stage) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each stage) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
reshaped_hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each stage) of shape(batch_size, hidden_size, height, width)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions.
The TFSwinForImageClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoImageProcessor, TFSwinForImageClassification
>>> import tensorflow as tf
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> model = TFSwinForImageClassification.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> inputs = image_processor(image, return_tensors="tf")
>>> logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = int(tf.math.argmax(logits, axis=-1))
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat