Transformers documentation

CodeGen

You are viewing v4.38.0 version. A newer version v4.47.1 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

CodeGen

Overview

CodeGen モデルは、A Conversational Paradigm for Program Synthesis で Erik Nijkamp、Bo Pang、林宏明、Lifu Tu、Huan Wang、Yingbo Zhou、Silvio Savarese、Caiming Xiong およびカイミン・ションさん。

CodeGen は、The Pile、BigQuery、BigPython で順次トレーニングされたプログラム合成用の自己回帰言語モデルです。

論文の要約は次のとおりです。

プログラム合成は、与えられた問題仕様の解決策としてコンピューター プログラムを生成することを目的としています。我々は、大規模な言語モデルを介した会話型プログラム合成アプローチを提案します。これは、従来のアプローチで直面した広大なプログラム空間とユーザーの意図の仕様を検索するという課題に対処します。私たちの新しいアプローチでは、仕様とプログラムを作成するプロセスを、ユーザーとシステムの間の複数回の対話として捉えます。これはプログラム合成をシーケンス予測問題として扱い、仕様が自然言語で表現され、目的のプログラムが条件付きでサンプリングされます。私たちは、自然言語とプログラミング言語のデータに基づいて、CodeGen と呼ばれる大規模な言語モデルのファミリーをトレーニングします。データの監視が弱く、データ サイズとモデル サイズが拡大すると、単純な自己回帰言語モデリングから会話能力が生まれます。会話型プログラム合成におけるモデルの動作を研究するために、マルチターン プログラミング ベンチマーク (MTPB) を開発します。このベンチマークでは、各問題を解決するには、ユーザーとモデル間のマルチターン会話を介したマルチステップ合成が必要です。私たちの調査結果は、会話機能の出現と、提案されている会話プログラム合成パラダイムの有効性を示しています。さらに、私たちのモデル CodeGen (TPU-v4 でトレーニングされた最大 16B パラメーターを含む) は、HumanEval ベンチマークで OpenAI の Codex を上回ります。私たちはチェックポイントを含むトレーニング ライブラリ JaxFormer をオープン ソースのコントリビューションとして利用できるようにしています: この https URL

このモデルは 林 宏明 によって寄稿されました。 元のコードは ここ にあります。

Checkpoint Naming

  • CodeGen モデル チェックポイント は、可変サイズのさまざまな事前トレーニング データで利用できます。
  • 形式は「Salesforce/codegen-{size}-{data}」です。ここで、
    • size: 350M2B6B16B
    • data:
      • nl: パイルで事前トレーニング済み
      • multi: nl で初期化され、複数のプログラミング言語データでさらに事前トレーニングされます。
      • mono: multi で初期化され、Python データでさらに事前トレーニングされます。
  • たとえば、Salesforce/codegen-350M-mono は、Pile、複数のプログラミング言語、および Python で順次事前トレーニングされた 3 億 5,000 万のパラメーターのチェックポイントを提供します。

Usage example

>>> from transformers import AutoModelForCausalLM, AutoTokenizer

>>> checkpoint = "Salesforce/codegen-350M-mono"
>>> model = AutoModelForCausalLM.from_pretrained(checkpoint)
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)

>>> text = "def hello_world():"

>>> completion = model.generate(**tokenizer(text, return_tensors="pt"))

>>> print(tokenizer.decode(completion[0]))
def hello_world():
    print("Hello World")

hello_world()

Resources

CodeGenConfig

class transformers.CodeGenConfig

< >

( vocab_size = 50400 n_positions = 2048 n_ctx = 2048 n_embd = 4096 n_layer = 28 n_head = 16 rotary_dim = 64 n_inner = None activation_function = 'gelu_new' resid_pdrop = 0.0 embd_pdrop = 0.0 attn_pdrop = 0.0 layer_norm_epsilon = 1e-05 initializer_range = 0.02 use_cache = True bos_token_id = 50256 eos_token_id = 50256 tie_word_embeddings = False **kwargs )

Parameters

  • vocab_size (int, optional, defaults to 50400) — Vocabulary size of the CodeGen model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling CodeGenModel.
  • n_positions (int, optional, defaults to 2048) — The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
  • n_ctx (int, optional, defaults to 2048) — This attribute is used in CodeGenModel.__init__ without any real effect.
  • n_embd (int, optional, defaults to 4096) — Dimensionality of the embeddings and hidden states.
  • n_layer (int, optional, defaults to 28) — Number of hidden layers in the Transformer encoder.
  • n_head (int, optional, defaults to 16) — Number of attention heads for each attention layer in the Transformer encoder.
  • rotary_dim (int, optional, defaults to 64) — Number of dimensions in the embedding that Rotary Position Embedding is applied to.
  • n_inner (int, optional) — Dimensionality of the inner feed-forward layers. None will set it to 4 times n_embd
  • activation_function (str, optional, defaults to "gelu_new") — Activation function, to be selected in the list ["relu", "silu", "gelu", "tanh", "gelu_new"].
  • resid_pdrop (float, optional, defaults to 0.0) — The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
  • embd_pdrop (int, optional, defaults to 0.0) — The dropout ratio for the embeddings.
  • attn_pdrop (float, optional, defaults to 0.0) — The dropout ratio for the attention.
  • layer_norm_epsilon (float, optional, defaults to 1e-05) — The epsilon to use in the layer normalization layers.
  • initializer_range (float, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
  • use_cache (bool, optional, defaults to True) — Whether or not the model should return the last key/values attentions (not used by all models).
  • bos_token_id (int, optional, defaults to 50256) — Beginning of stream token id.
  • eos_token_id (int, optional, defaults to 50256) — End of stream token id.
  • tie_word_embeddings (bool, optional, defaults to False) — Whether the model’s input and output word embeddings should be tied. Note that this is only relevant if the model has a output word embedding layer.

This is the configuration class to store the configuration of a CodeGenModel. It is used to instantiate a CodeGen model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the CodeGen Salesforce/codegen-2B-mono architecture. Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Example:

>>> from transformers import CodeGenConfig, CodeGenModel

>>> # Initializing a CodeGen 6B configuration
>>> configuration = CodeGenConfig()

>>> # Initializing a model (with random weights) from the configuration
>>> model = CodeGenModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

CodeGenTokenizer

class transformers.CodeGenTokenizer

< >

( vocab_file merges_file errors = 'replace' unk_token = '<|endoftext|>' bos_token = '<|endoftext|>' eos_token = '<|endoftext|>' pad_token = None add_prefix_space = False add_bos_token = False **kwargs )

Parameters

  • vocab_file (str) — Path to the vocabulary file.
  • merges_file (str) — Path to the merges file.
  • errors (str, optional, defaults to "replace") — Paradigm to follow when decoding bytes to UTF-8. See bytes.decode for more information.
  • unk_token (str, optional, defaults to "<|endoftext|>") — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
  • bos_token (str, optional, defaults to "<|endoftext|>") — The beginning of sequence token.
  • eos_token (str, optional, defaults to "<|endoftext|>") — The end of sequence token.
  • pad_token (str, optional) — The token used for padding, for example when batching sequences of different lengths.
  • add_prefix_space (bool, optional, defaults to False) — Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (CodeGen tokenizer detect beginning of words by the preceding space).
  • add_bos_token (bool, optional, defaults to False) — Whether to add a beginning of sequence token at the start of sequences.

Construct a CodeGen tokenizer. Based on byte-level Byte-Pair-Encoding.

This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will

be encoded differently whether it is at the beginning of the sentence (without space) or not:

>>> from transformers import CodeGenTokenizer

>>> tokenizer = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono")
>>> tokenizer("Hello world")["input_ids"]
[15496, 995]

>>> tokenizer(" Hello world")["input_ids"]
[18435, 995]

You can get around that behavior by passing add_prefix_space=True when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.

When used with is_split_into_words=True, this tokenizer will add a space before each word (even the first one).

This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.

save_vocabulary

< >

( save_directory: str filename_prefix: Optional = None )

CodeGenTokenizerFast

class transformers.CodeGenTokenizerFast

< >

( vocab_file = None merges_file = None tokenizer_file = None unk_token = '<|endoftext|>' bos_token = '<|endoftext|>' eos_token = '<|endoftext|>' add_prefix_space = False **kwargs )

Parameters

  • vocab_file (str, optional) — Path to the vocabulary file.
  • merges_file (str, optional) — Path to the merges file.
  • tokenizer_file (str, optional) — Path to tokenizers file (generally has a .json extension) that contains everything needed to load the tokenizer.
  • unk_token (str, optional, defaults to "<|endoftext|>") — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
  • bos_token (str, optional, defaults to "<|endoftext|>") — The beginning of sequence token.
  • eos_token (str, optional, defaults to "<|endoftext|>") — The end of sequence token.
  • add_prefix_space (bool, optional, defaults to False) — Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (CodeGen tokenizer detect beginning of words by the preceding space).

Construct a “fast” CodeGen tokenizer (backed by HuggingFace’s tokenizers library). Based on byte-level Byte-Pair-Encoding.

This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will

be encoded differently whether it is at the beginning of the sentence (without space) or not:

>>> from transformers import CodeGenTokenizerFast

>>> tokenizer = CodeGenTokenizerFast.from_pretrained("Salesforce/codegen-350M-mono")
>>> tokenizer("Hello world")["input_ids"]
[15496, 995]

>>> tokenizer(" Hello world")["input_ids"]
[18435, 995]

You can get around that behavior by passing add_prefix_space=True when instantiating this tokenizer, but since the model was not pretrained this way, it might yield a decrease in performance.

When used with is_split_into_words=True, this tokenizer needs to be instantiated with add_prefix_space=True.

This tokenizer inherits from PreTrainedTokenizerFast which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.

decode

< >

( token_ids: Union skip_special_tokens: bool = False clean_up_tokenization_spaces: bool = None truncate_before_pattern: Optional = None **kwargs ) str

Parameters

  • token_ids (Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]) — List of tokenized input ids. Can be obtained using the __call__ method.
  • skip_special_tokens (bool, optional, defaults to False) — Whether or not to remove special tokens in the decoding.
  • clean_up_tokenization_spaces (bool, optional) — Whether or not to clean up the tokenization spaces. If None, will default to self.clean_up_tokenization_spaces (available in the tokenizer_config).
  • truncate_before_pattern (List[str], optional, defaults to None) — A list of regular expression strings that will be used to truncate the returned string. This can be used to remove extra pieces of code (e.g. truncate if observing a comment symbol ”#” at the beginning of a new line). An example pattern could be `[”^#”, re.escape(”<|endoftext|>”), ”^'''”, ”

Returns

str

The decoded sentence.

Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces.

Similar to doing self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids)).

”]`. kwargs (additional keyword arguments, optional): Will be passed to the underlying model specific decode method.

CodeGenModel

class transformers.CodeGenModel

< >

( config )

Parameters

  • config (CodeGenConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The bare CodeGen Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.BaseModelOutputWithPast or tuple(torch.FloatTensor)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using AutoProcenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_attention_heads,) or (n_layer, num_attention_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_dim), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

Returns

transformers.modeling_outputs.BaseModelOutputWithPast or tuple(torch.FloatTensor)

A transformers.modeling_outputs.BaseModelOutputWithPast or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (CodeGenConfig) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

    If past_key_values is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size) is output.

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and optionally if config.is_encoder_decoder=True 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if config.is_encoder_decoder=True in the cross-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The CodeGenModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import AutoTokenizer, CodeGenModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-2B-mono")
>>> model = CodeGenModel.from_pretrained("Salesforce/codegen-2B-mono")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

CodeGenForCausalLM

class transformers.CodeGenForCausalLM

< >

( config )

Parameters

  • config (CodeGenConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The CodeGen Model transformer with a language modeling head on top.

This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using AutoProcenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_attention_heads,) or (n_layer, num_attention_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_dim), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set labels = input_ids Indices are selected in [-100, 0, ..., config.vocab_size] All labels set to -100 are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size]

Returns

transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)

A transformers.modeling_outputs.CausalLMOutputWithPast or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (CodeGenConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Language modeling loss (for next-token prediction).

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head))

    Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The CodeGenForCausalLM forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> import torch
>>> from transformers import AutoTokenizer, CodeGenForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-2B-mono")
>>> model = CodeGenForCausalLM.from_pretrained("Salesforce/codegen-2B-mono")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits