Automatic speech recognition
Automatic speech recognition (ASR) converts a speech signal to text. It is an example of a sequence-to-sequence task, going from a sequence of audio inputs to textual outputs. Voice assistants like Siri and Alexa utilize ASR models to assist users.
This guide will show you how to fine-tune Wav2Vec2 on the MInDS-14 dataset to transcribe audio to text.
See the automatic speech recognition task page for more information about its associated models, datasets, and metrics.
Load MInDS-14 dataset
Load the MInDS-14 from the 🤗 Datasets library:
>>> from datasets import load_dataset, Audio
>>> minds = load_dataset("PolyAI/minds14", name="en-US", split="train")
Split this dataset into a train and test set:
>>> minds = minds.train_test_split(test_size=0.2)
Then take a look at the dataset:
>>> minds
DatasetDict({
train: Dataset({
features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],
num_rows: 450
})
test: Dataset({
features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],
num_rows: 113
})
})
While the dataset contains a lot of helpful information, like lang_id
and intent_class
, you will focus on the audio
and transcription
columns in this guide. Remove the other columns:
>>> minds = minds.remove_columns(["english_transcription", "intent_class", "lang_id"])
Take a look at the example again:
>>> minds["train"][0]
{'audio': {'array': array([-0.00024414, 0. , 0. , ..., 0.00024414,
0.00024414, 0.00024414], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav',
'sampling_rate': 8000},
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav',
'transcription': "hi I'm trying to use the banking app on my phone and currently my checking and savings account balance is not refreshing"}
The audio
column contains a 1-dimensional array
of the speech signal that must be called to load and resample the audio file.
Preprocess
Load the Wav2Vec2 processor to process the audio signal and transcribed text:
>>> from transformers import AutoProcessor
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base")
The MInDS-14 dataset has a sampling rate of 8000khz. You will need to resample the dataset to use the pretrained Wav2Vec2 model:
>>> minds = minds.cast_column("audio", Audio(sampling_rate=16_000))
>>> minds["train"][0]
{'audio': {'array': array([-2.38064706e-04, -1.58618059e-04, -5.43987835e-06, ...,
2.78103951e-04, 2.38446111e-04, 1.18740834e-04], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav',
'sampling_rate': 16000},
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602ba9e2963e11ccd901cd4f.wav',
'transcription': "hi I'm trying to use the banking app on my phone and currently my checking and savings account balance is not refreshing"}
The preprocessing function needs to:
- Call the
audio
column to load and resample the audio file. - Extract the
input_values
from the audio file. - Typically, when you call the processor, you call the feature extractor. Since you also want to tokenize text, instruct the processor to call the tokenizer instead with a context manager.
>>> def prepare_dataset(batch):
... audio = batch["audio"]
... batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
... batch["input_length"] = len(batch["input_values"])
... with processor.as_target_processor():
... batch["labels"] = processor(batch["transcription"]).input_ids
... return batch
Use 🤗 Datasets map function to apply the preprocessing function over the entire dataset. You can speed up the map function by increasing the number of processes with num_proc
. Remove the columns you don’t need:
>>> encoded_minds = minds.map(prepare_dataset, remove_columns=minds.column_names["train"], num_proc=4)
🤗 Transformers doesn’t have a data collator for automatic speech recognition, so you will need to create one. You can adapt the DataCollatorWithPadding to create a batch of examples for automatic speech recognition. It will also dynamically pad your text and labels to the length of the longest element in its batch, so they are a uniform length. While it is possible to pad your text in the tokenizer
function by setting padding=True
, dynamic padding is more efficient.
Unlike other data collators, this specific data collator needs to apply a different padding method to input_values
and labels
. You can apply a different padding method with a context manager:
>>> import torch
>>> from dataclasses import dataclass, field
>>> from typing import Any, Dict, List, Optional, Union
>>> @dataclass
... class DataCollatorCTCWithPadding:
... processor: AutoProcessor
... padding: Union[bool, str] = True
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... # split inputs and labels since they have to be of different lengths and need
... # different padding methods
... input_features = [{"input_values": feature["input_values"]} for feature in features]
... label_features = [{"input_ids": feature["labels"]} for feature in features]
... batch = self.processor.pad(
... input_features,
... padding=self.padding,
... return_tensors="pt",
... )
... with self.processor.as_target_processor():
... labels_batch = self.processor.pad(
... label_features,
... padding=self.padding,
... return_tensors="pt",
... )
... # replace padding with -100 to ignore loss correctly
... labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
... batch["labels"] = labels
... return batch
Create a batch of examples and dynamically pad them with DataCollatorForCTCWithPadding
:
>>> data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)
Train
Load Wav2Vec2 with AutoModelForCTC. For ctc_loss_reduction
, it is often better to use the average instead of the default summation:
>>> from transformers import AutoModelForCTC, TrainingArguments, Trainer
>>> model = AutoModelForCTC.from_pretrained(
... "facebook/wav2vec2-base",
... ctc_loss_reduction="mean",
... pad_token_id=processor.tokenizer.pad_token_id,
... )
If you aren’t familiar with fine-tuning a model with the Trainer, take a look at the basic tutorial here!
At this point, only three steps remain:
- Define your training hyperparameters in TrainingArguments.
- Pass the training arguments to Trainer along with the model, datasets, tokenizer, and data collator.
- Call train() to fine-tune your model.
>>> training_args = TrainingArguments(
... output_dir="./results",
... group_by_length=True,
... per_device_train_batch_size=16,
... evaluation_strategy="steps",
... num_train_epochs=3,
... fp16=True,
... gradient_checkpointing=True,
... learning_rate=1e-4,
... weight_decay=0.005,
... save_total_limit=2,
... )
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=encoded_minds["train"],
... eval_dataset=encoded_minds["test"],
... tokenizer=processor.feature_extractor,
... data_collator=data_collator,
... )
>>> trainer.train()