Transformers documentation

一般的なユーティリティ

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v4.47.1).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

一般的なユーティリティ

このページには、ファイル utils.py にある Transformers の一般的なユーティリティ関数がすべてリストされています。

これらのほとんどは、ライブラリで一般的なコードを学習する場合にのみ役に立ちます。

列挙型と名前付きタプル

class transformers.utils.ExplicitEnum

< >

( value names = None module = None qualname = None type = None start = 1 )

Enum with more explicit error message for missing values.

class transformers.utils.PaddingStrategy

< >

( value names = None module = None qualname = None type = None start = 1 )

Possible values for the padding argument in PreTrainedTokenizerBase.call(). Useful for tab-completion in an IDE.

class transformers.TensorType

< >

( value names = None module = None qualname = None type = None start = 1 )

Possible values for the return_tensors argument in PreTrainedTokenizerBase.call(). Useful for tab-completion in an IDE.

特別なデコレーター

transformers.add_start_docstrings

< >

( *docstr )

transformers.utils.add_start_docstrings_to_model_forward

< >

( *docstr )

transformers.add_end_docstrings

< >

( *docstr )

transformers.utils.add_code_sample_docstrings

< >

( *docstr processor_class = None checkpoint = None output_type = None config_class = None mask = '[MASK]' qa_target_start_index = 14 qa_target_end_index = 15 model_cls = None modality = None expected_output = None expected_loss = None real_checkpoint = None revision = None )

transformers.utils.replace_return_docstrings

< >

( output_type = None config_class = None )

特殊なプロパティ

class transformers.utils.cached_property

< >

( fget = None fset = None fdel = None doc = None )

Descriptor that mimics @property but caches output in member variable.

From tensorflow_datasets

Built-in in functools from Python 3.8.

その他のユーティリティ

class transformers.utils._LazyModule

< >

( name: str module_file: str import_structure: typing.Dict[typing.FrozenSet[str], typing.Dict[str, typing.Set[str]]] module_spec: ModuleSpec = None extra_objects: typing.Dict[str, object] = None )

Module class that surfaces all objects but only performs associated imports when the objects are requested.

< > Update on GitHub