Transformers.js documentation

generation/streamers

You are viewing main version, which requires installation from source. If you'd like regular npm install, checkout the latest stable version (v3.0.0).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

generation/streamers


generation/streamers.TextStreamer

Simple text streamer that prints the token(s) to stdout as soon as entire words are formed.

Kind: static class of generation/streamers


new TextStreamer(tokenizer, options)

ParamTypeDefaultDescription
tokenizer*
optionsObject
[options.skip_prompt]booleanfalse

Whether to skip the prompt tokens

[options.callback_function]function

Function to call when a piece of text is ready to display

[options.token_callback_function]function

Function to call when a new token is generated

[options.decode_kwargs]Object{}

Additional keyword arguments to pass to the tokenizer's decode method


textStreamer.put(value)

Receives tokens, decodes them, and prints them to stdout as soon as they form entire words.

Kind: instance method of TextStreamer

ParamType
valueArray.<Array<bigint>>

textStreamer.end()

Flushes any remaining cache and prints a newline to stdout.

Kind: instance method of TextStreamer


textStreamer.on_finalized_text(text, stream_end)

Prints the new text to stdout. If the stream is ending, also prints a newline.

Kind: instance method of TextStreamer

ParamType
textstring
stream_endboolean

generation/streamers.WhisperTextStreamer

Utility class to handle streaming of tokens generated by whisper speech-to-text models. Callback functions are invoked when each of the following events occur:

  • A new chunk starts (on_chunk_start)
  • A new token is generated (callback_function)
  • A chunk ends (on_chunk_end)
  • The stream is finalized (on_finalize)

Kind: static class of generation/streamers


new WhisperTextStreamer(tokenizer, options)

ParamTypeDefaultDescription
tokenizer*
optionsObject
[options.skip_prompt]booleanfalse

Whether to skip the prompt tokens

[options.callback_function]function

Function to call when a piece of text is ready to display

[options.token_callback_function]function

Function to call when a new token is generated

[options.on_chunk_start]function

Function to call when a new chunk starts

[options.on_chunk_end]function

Function to call when a chunk ends

[options.on_finalize]function

Function to call when the stream is finalized

[options.time_precision]number0.02

Precision of the timestamps

[options.skip_special_tokens]booleantrue

Whether to skip special tokens when decoding

[options.decode_kwargs]Object{}

Additional keyword arguments to pass to the tokenizer's decode method


whisperTextStreamer.put(value)

Kind: instance method of WhisperTextStreamer

ParamType
valueArray.<Array<bigint>>

< > Update on GitHub