Models
timm.create_model
< source >( model_name: str pretrained: bool = False pretrained_cfg: typing.Union[str, typing.Dict[str, typing.Any], timm.models._pretrained.PretrainedCfg, NoneType] = None pretrained_cfg_overlay: typing.Optional[typing.Dict[str, typing.Any]] = None checkpoint_path: str = '' scriptable: typing.Optional[bool] = None exportable: typing.Optional[bool] = None no_jit: typing.Optional[bool] = None **kwargs )
Parameters
- model_name — Name of model to instantiate.
- pretrained — If set to True, load pretrained ImageNet-1k weights.
- pretrained_cfg — Pass in an external pretrained_cfg for model.
- pretrained_cfg_overlay — Replace key-values in base pretrained_cfg with these.
- checkpoint_path — Path of checkpoint to load after the model is initialized.
- scriptable — Set layer config so that model is jit scriptable (not working for all models yet).
- exportable — Set layer config so that model is traceable / ONNX exportable (not fully impl/obeyed yet).
- no_jit — Set layer config so that model doesn’t utilize jit scripted layers (so far activations only).
Create a model.
Lookup model’s entrypoint function and pass relevant args to create a new model.
Keyword Args: drop_rate (float): Classifier dropout rate for training. drop_path_rate (float): Stochastic depth drop rate for training. global_pool (str): Classifier global pooling type.
Example:
>>> from timm import create_model
>>> # Create a MobileNetV3-Large model with no pretrained weights.
>>> model = create_model('mobilenetv3_large_100')
>>> # Create a MobileNetV3-Large model with pretrained weights.
>>> model = create_model('mobilenetv3_large_100', pretrained=True)
>>> model.num_classes
1000
>>> # Create a MobileNetV3-Large model with pretrained weights and a new head with 10 classes.
>>> model = create_model('mobilenetv3_large_100', pretrained=True, num_classes=10)
>>> model.num_classes
10
timm.list_models
< source >( filter: typing.Union[str, typing.List[str]] = '' module: typing.Union[str, typing.List[str]] = '' pretrained: bool = False exclude_filters: typing.Union[str, typing.List[str]] = '' name_matches_cfg: bool = False include_tags: typing.Optional[bool] = None )
Parameters
- filter - Wildcard filter string that works with fnmatch —
- module - Limit model selection to a specific submodule (ie ‘vision_transformer’) —
- pretrained - Include only models with valid pretrained weights if True —
- exclude_filters - Wildcard filters to exclude models after including them with filter —
- name_matches_cfg - Include only models w/ model_name matching default_cfg name (excludes some aliases) —
- include_tags - Include pretrained tags in model names (model.tag). If None, defaults — set to True when pretrained=True else False (default: None)
Return list of available model names, sorted alphabetically
Example: model_list(‘gluon_resnet’) — returns all models starting with ‘gluon_resnet’ model_list(’resnext*, ‘resnet’) — returns all models with ‘resnext’ in ‘resnet’ module