Data
timm.data.create_dataset
< source >( name: str root: typing.Optional[str] = None split: str = 'validation' search_split: bool = True class_map: dict = None load_bytes: bool = False is_training: bool = False download: bool = False batch_size: int = 1 num_samples: typing.Optional[int] = None seed: int = 42 repeats: int = 0 input_img_mode: str = 'RGB' **kwargs )
Parameters
- name — dataset name, empty is okay for folder based datasets
- root — root folder of dataset (all)
- split — dataset split (all)
- search_split — search for split specific child fold from root so one can specify
imagenet/
instead of/imagenet/val
, etc on cmd line / config. (folder, torch/folder) - class_map — specify class -> index mapping via text file or dict (folder)
- load_bytes — load data, return images as undecoded bytes (folder)
- download — download dataset if not present and supported (HFDS, TFDS, torch)
- is_training — create dataset in train mode, this is different from the split. For Iterable / TDFS it enables shuffle, ignored for other datasets. (TFDS, WDS)
- batch_size — batch size hint for (TFDS, WDS)
- seed — seed for iterable datasets (TFDS, WDS)
- repeats — dataset repeats per iteration i.e. epoch (TFDS, WDS)
- input_img_mode — Input image color conversion mode e.g. ‘RGB’, ‘L’ (folder, TFDS, WDS, HFDS)
- **kwargs — other args to pass to dataset
Dataset factory method
In parentheses after each arg are the type of dataset supported for each arg, one of:
- folder - default, timm folder (or tar) based ImageDataset
- torch - torchvision based datasets
- HFDS - Hugging Face Datasets
- TFDS - Tensorflow-datasets wrapper in IterabeDataset interface via IterableImageDataset
- WDS - Webdataset
- all - any of the above
timm.data.create_loader
< source >( dataset: typing.Union[timm.data.dataset.ImageDataset, timm.data.dataset.IterableImageDataset] input_size: typing.Union[int, typing.Tuple[int, int], typing.Tuple[int, int, int]] batch_size: int is_training: bool = False no_aug: bool = False re_prob: float = 0.0 re_mode: str = 'const' re_count: int = 1 re_split: bool = False train_crop_mode: typing.Optional[str] = None scale: typing.Optional[typing.Tuple[float, float]] = None ratio: typing.Optional[typing.Tuple[float, float]] = None hflip: float = 0.5 vflip: float = 0.0 color_jitter: float = 0.4 color_jitter_prob: typing.Optional[float] = None grayscale_prob: float = 0.0 gaussian_blur_prob: float = 0.0 auto_augment: typing.Optional[str] = None num_aug_repeats: int = 0 num_aug_splits: int = 0 interpolation: str = 'bilinear' mean: typing.Tuple[float, ...] = (0.485, 0.456, 0.406) std: typing.Tuple[float, ...] = (0.229, 0.224, 0.225) num_workers: int = 1 distributed: bool = False crop_pct: typing.Optional[float] = None crop_mode: typing.Optional[str] = None crop_border_pixels: typing.Optional[int] = None collate_fn: typing.Optional[typing.Callable] = None pin_memory: bool = False fp16: bool = False img_dtype: dtype = torch.float32 device: device = device(type='cuda') use_prefetcher: bool = True use_multi_epochs_loader: bool = False persistent_workers: bool = True worker_seeding: str = 'all' tf_preprocessing: bool = False )
Parameters
- dataset — The image dataset to load.
- input_size — Target input size (channels, height, width) tuple or size scalar.
- batch_size — Number of samples in a batch.
- is_training — Return training (random) transforms.
- no_aug — Disable augmentation for training (useful for debug).
- re_prob — Random erasing probability.
- re_mode — Random erasing fill mode.
- re_count — Number of random erasing regions.
- re_split — Control split of random erasing across batch size.
- scale — Random resize scale range (crop area, < 1.0 => zoom in).
- ratio — Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR).
- hflip — Horizontal flip probability.
- vflip — Vertical flip probability.
- color_jitter — Random color jitter component factors (brightness, contrast, saturation, hue). Scalar is applied as (scalar,) * 3 (no hue).
- color_jitter_prob — Apply color jitter with this probability if not None (for SimlCLR-like aug
- grayscale_prob — Probability of converting image to grayscale (for SimCLR-like aug).
- gaussian_blur_prob — Probability of applying gaussian blur (for SimCLR-like aug).
- auto_augment — Auto augment configuration string (see auto_augment.py).
- num_aug_repeats — Enable special sampler to repeat same augmentation across distributed GPUs.
- num_aug_splits — Enable mode where augmentations can be split across the batch.
- interpolation — Image interpolation mode.
- mean — Image normalization mean.
- std — Image normalization standard deviation.
- num_workers — Num worker processes per DataLoader.
- distributed — Enable dataloading for distributed training.
- crop_pct — Inference crop percentage (output size / resize size).
- crop_mode — Inference crop mode. One of [‘squash’, ‘border’, ‘center’]. Defaults to ‘center’ when None.
- crop_border_pixels — Inference crop border of specified # pixels around edge of original image.
- collate_fn — Override default collate_fn.
- pin_memory — Pin memory for device transfer.
- fp16 — Deprecated argument for half-precision input dtype. Use img_dtype.
- img_dtype — Data type for input image.
- device — Device to transfer inputs and targets to.
- use_prefetcher — Use efficient pre-fetcher to load samples onto device.
- use_multi_epochs_loader —
- persistent_workers — Enable persistent worker processes.
- worker_seeding — Control worker random seeding at init.
- tf_preprocessing — Use TF 1.0 inference preprocessing for testing model ports.
timm.data.create_transform
< source >( input_size: typing.Union[int, typing.Tuple[int, int], typing.Tuple[int, int, int]] = 224 is_training: bool = False no_aug: bool = False train_crop_mode: typing.Optional[str] = None scale: typing.Optional[typing.Tuple[float, float]] = None ratio: typing.Optional[typing.Tuple[float, float]] = None hflip: float = 0.5 vflip: float = 0.0 color_jitter: typing.Union[float, typing.Tuple[float, ...]] = 0.4 color_jitter_prob: typing.Optional[float] = None grayscale_prob: float = 0.0 gaussian_blur_prob: float = 0.0 auto_augment: typing.Optional[str] = None interpolation: str = 'bilinear' mean: typing.Tuple[float, ...] = (0.485, 0.456, 0.406) std: typing.Tuple[float, ...] = (0.229, 0.224, 0.225) re_prob: float = 0.0 re_mode: str = 'const' re_count: int = 1 re_num_splits: int = 0 crop_pct: typing.Optional[float] = None crop_mode: typing.Optional[str] = None crop_border_pixels: typing.Optional[int] = None tf_preprocessing: bool = False use_prefetcher: bool = False normalize: bool = True separate: bool = False )
Parameters
- input_size — Target input size (channels, height, width) tuple or size scalar.
- is_training — Return training (random) transforms.
- no_aug — Disable augmentation for training (useful for debug).
- train_crop_mode — Training random crop mode (‘rrc’, ‘rkrc’, ‘rkrr’).
- scale — Random resize scale range (crop area, < 1.0 => zoom in).
- ratio — Random aspect ratio range (crop ratio for RRC, ratio adjustment factor for RKR).
- hflip — Horizontal flip probability.
- vflip — Vertical flip probability.
- color_jitter — Random color jitter component factors (brightness, contrast, saturation, hue). Scalar is applied as (scalar,) * 3 (no hue).
- color_jitter_prob — Apply color jitter with this probability if not None (for SimlCLR-like aug).
- grayscale_prob — Probability of converting image to grayscale (for SimCLR-like aug).
- gaussian_blur_prob — Probability of applying gaussian blur (for SimCLR-like aug).
- auto_augment — Auto augment configuration string (see auto_augment.py).
- interpolation — Image interpolation mode.
- mean — Image normalization mean.
- std — Image normalization standard deviation.
- re_prob — Random erasing probability.
- re_mode — Random erasing fill mode.
- re_count — Number of random erasing regions.
- re_num_splits — Control split of random erasing across batch size.
- crop_pct — Inference crop percentage (output size / resize size).
- crop_mode — Inference crop mode. One of [‘squash’, ‘border’, ‘center’]. Defaults to ‘center’ when None.
- crop_border_pixels — Inference crop border of specified # pixels around edge of original image.
- tf_preprocessing — Use TF 1.0 inference preprocessing for testing model ports
- use_prefetcher — Pre-fetcher enabled. Do not convert image to tensor or normalize.
- normalize — Normalization tensor output w/ provided mean/std (if prefetcher not used).
- separate — Output transforms in 3-stage tuple.
timm.data.resolve_data_config
< source >( args = None pretrained_cfg = None model = None use_test_size = False verbose = False )