Export functions
You can export models to ONNX from two frameworks in 🤗 Optimum: PyTorch and TensorFlow. There is an export function for each of these frameworks, export_pytorch() and export_tensorflow(), but the recommended way of using those is via the main export function ~optimum.exporters.main_export
, which will take care of using the proper exporting function according to the available framework, check that the exported model is valid, and provide extended options to run optimizations on the exported model.
Main functions
optimum.exporters.onnx.main_export
< source >( model_name_or_path: str output: typing.Union[str, pathlib.Path] task: str = 'auto' opset: typing.Optional[int] = None device: str = 'cpu' fp16: typing.Optional[bool] = False optimize: typing.Optional[str] = None monolith: bool = False no_post_process: bool = False framework: typing.Optional[str] = None atol: typing.Optional[float] = None cache_dir: typing.Optional[str] = None trust_remote_code: bool = False pad_token_id: typing.Optional[int] = None subfolder: str = '' revision: str = 'main' force_download: bool = False local_files_only: bool = False use_auth_token: typing.Union[str, bool, NoneType] = None for_ort: bool = False do_validation: bool = True **kwargs_shapes )
Required parameters
-
model_name_or_path (
str
) — Model ID on huggingface.co or path on disk to the model repository to export. -
output (
Union[str, Path]
) — Path indicating the directory where to store the generated ONNX model.
Optional parameters
-
task (
Optional[str]
, defaults toNone
) — The task to export the model for. If not specified, the task will be auto-inferred based on the model. For decoder models, usexxx-with-past
to export the model using past key values in the decoder. -
opset (
Optional[int]
, defaults toNone
) — If specified, ONNX opset version to export the model with. Otherwise, the default opset for the given model architecture will be used. -
device (
str
, defaults to"cpu"
) — The device to use to do the export. Defaults to “cpu”. -
fp16 (
Optional[bool]
, defaults to"False"
) — Use half precision during the export. PyTorch-only, requiresdevice="cuda"
. -
optimize (
Optional[str]
, defaults toNone
) — Allows to run ONNX Runtime optimizations directly during the export. Some of these optimizations are specific to ONNX Runtime, and the resulting ONNX will not be usable with other runtime as OpenVINO or TensorRT. Available options:"O1", "O2", "O3", "O4"
. Reference: AutoOptimizationConfig -
monolith (
bool
, defaults toFalse
) — Forces to export the model as a single ONNX file. -
no_post_process (
bool
, defaults toFalse
) — Allows to disable any post-processing done by default on the exported ONNX models. -
framework (
Optional[str]
, defaults toNone
) — The framework to use for the ONNX export ("pt"
or"tf"
). If not provided, will attempt to automatically detect the framework for the checkpoint. -
atol (
Optional[float]
, defaults toNone
) — If specified, the absolute difference tolerance when validating the model. Otherwise, the default atol for the model will be used. -
cache_dir (
Optional[str]
, defaults toNone
) — Path indicating where to store cache. The default Hugging Face cache path will be used by default. -
trust_remote_code (
bool
, defaults toFalse
) — Allows to use custom code for the modeling hosted in the model repository. This option should only be set for repositories you trust and in which you have read the code, as it will execute on your local machine arbitrary code present in the model repository. -
pad_token_id (
Optional[int]
, defaults toNone
) — This is needed by some models, for some tasks. If not provided, will attempt to use the tokenizer to guess it. -
subfolder (
str
, defaults to""
) — In case the relevant files are located inside a subfolder of the model repo either locally or on huggingface.co, you can specify the folder name here. -
revision (
str
, defaults to"main"
) — Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id. -
force_download (
bool
, defaults toFalse
) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. -
local_files_only (
Optional[bool]
, defaults toFalse
) — Whether or not to only look at local files (i.e., do not try to download the model). -
use_auth_token (
Optional[str]
, defaults toNone
) — The token to use as HTTP bearer authorization for remote files. IfTrue
, will use the token generated when runningtransformers-cli login
(stored in~/.huggingface
). -
**kwargs_shapes (
Dict
) — Shapes to use during inference. This argument allows to override the default shapes used during the ONNX export.
Full-suite ONNX export.
optimum.exporters.onnx.export
< source >(
model: typing.Union[ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel'), ForwardRef('ModelMixin')]
config: OnnxConfig
output: Path
opset: typing.Optional[int] = None
device: str = 'cpu'
input_shapes: typing.Optional[typing.Dict] = None
disable_dynamic_axes_fix: typing.Optional[bool] = False
dtype: typing.Optional[str] = None
)
→
Tuple[List[str], List[str]]
Parameters
-
model (
PreTrainedModel
orTFPreTrainedModel
) — The model to export. - config (OnnxConfig) — The ONNX configuration associated with the exported model.
-
output (
Path
) — Directory to store the exported ONNX model. -
opset (
Optional[int]
, defaults toNone
) — The version of the ONNX operator set to use. -
device (
str
, optional, defaults tocpu
) — The device on which the ONNX model will be exported. Eithercpu
orcuda
. Only PyTorch is supported for export on CUDA devices. -
input_shapes (
Optional[Dict]
, defaults toNone
) — If specified, allows to use specific shapes for the example input provided to the ONNX exporter. -
disable_dynamic_axes_fix (
Optional[bool]
, defaults toFalse
) — Whether to disable the default dynamic axes fixing. -
dtype (
Optional[str]
, defaults toNone
) — Data type to remap the model inputs to. PyTorch-only. Onlyfp16
is supported.
Returns
Tuple[List[str], List[str]]
A tuple with an ordered list of the model’s inputs, and the named outputs from the ONNX configuration.
Exports a Pytorch or TensorFlow model to an ONNX Intermediate Representation.
optimum.exporters.onnx.convert.export_pytorch
< source >(
model: typing.Union[ForwardRef('PreTrainedModel'), ForwardRef('ModelMixin')]
config: OnnxConfig
opset: int
output: Path
device: str = 'cpu'
dtype: typing.Optional[ForwardRef('torch.dtype')] = None
input_shapes: typing.Optional[typing.Dict] = None
)
→
Tuple[List[str], List[str]]
Parameters
-
model (
PreTrainedModel
) — The model to export. - config (OnnxConfig) — The ONNX configuration associated with the exported model.
-
opset (
int
) — The version of the ONNX operator set to use. -
output (
Path
) — Path to save the exported ONNX file to. -
device (
str
, defaults to"cpu"
) — The device on which the ONNX model will be exported. Eithercpu
orcuda
. Only PyTorch is supported for export on CUDA devices. -
dtype (
Optional[torch.dtype]
, defaults toNone
) — Data type to remap the model inputs to. PyTorch-only. Onlytorch.float16
is supported. -
input_shapes (
Optional[Dict]
, defaults toNone
) — If specified, allows to use specific shapes for the example input provided to the ONNX exporter.
Returns
Tuple[List[str], List[str]]
A tuple with an ordered list of the model’s inputs, and the named outputs from the ONNX configuration.
Exports a PyTorch model to an ONNX Intermediate Representation.
optimum.exporters.onnx.convert.export_tensorflow
< source >(
model: TFPreTrainedModel
config: OnnxConfig
opset: int
output: Path
)
→
Tuple[List[str], List[str]]
Parameters
-
model (
TFPreTrainedModel
) — The model to export. - config (OnnxConfig) — The ONNX configuration associated with the exported model.
-
opset (
int
) — The version of the ONNX operator set to use. -
output (
Path
) — Directory to store the exported ONNX model. -
device (
str
, optional, defaults tocpu
) — The device on which the ONNX model will be exported. Eithercpu
orcuda
. Only PyTorch is supported for export on CUDA devices.
Returns
Tuple[List[str], List[str]]
A tuple with an ordered list of the model’s inputs, and the named outputs from the ONNX configuration.
Exports a TensorFlow model to an ONNX Intermediate Representation.
Utility functions
optimum.exporters.onnx.convert.check_dummy_inputs_are_allowed
< source >( model: typing.Union[ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel'), ForwardRef('ModelMixin')] dummy_input_names: typing.Iterable[str] )
Checks that the dummy inputs from the ONNX config is a subset of the allowed inputs for model
.
optimum.exporters.onnx.validate_model_outputs
< source >( config: OnnxConfig reference_model: typing.Union[ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel'), ForwardRef('ModelMixin')] onnx_model: Path onnx_named_outputs: typing.List[str] atol: typing.Optional[float] = None input_shapes: typing.Optional[typing.Dict] = None device: str = 'cpu' dtype: typing.Optional[ForwardRef('torch.dtype')] = None )
Parameters
-
config (
~OnnxConfig
— The configuration used to export the model. -
reference_model (
~PreTrainedModel
or~TFPreTrainedModel
) — The model used for the export. -
onnx_model (
Path
) — The path to the exported model. -
onnx_named_outputs (
List[str]
) — The names of the outputs to check. -
atol (
Optional[float]
, defaults toNone
) — The absolute tolerance in terms of outputs difference between the reference and the exported model. -
input_shapes (
Optional[Dict]
, defaults toNone
) — If specified, allows to use specific shapes to validate the ONNX model on. -
device (
str
, defaults to"cpu"
) — The device on which the ONNX model will be validated. Eithercpu
orcuda
. Validation on a CUDA device is supported only for PyTorch.
Raises
ValueError
ValueError
— If the outputs shapes or values do not match between the reference and the exported model.
Validates the export by checking that the outputs from both the reference and the exported model match.