Diffusers documentation

Attend-and-Excite

You are viewing v0.30.2 version. A newer version v0.31.0 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Attend-and-Excite

Attend-and-Excite for Stable Diffusion was proposed in Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models and provides textual attention control over image generation.

The abstract from the paper is:

Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt. While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt. We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect, where the model fails to generate one or more of the subjects from the input prompt. Moreover, we find that in some cases the model also fails to correctly bind attributes (e.g., colors) to their corresponding subjects. To help mitigate these failure cases, we introduce the concept of Generative Semantic Nursing (GSN), where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness of the generated images. Using an attention-based formulation of GSN, dubbed Attend-and-Excite, we guide the model to refine the cross-attention units to attend to all subject tokens in the text prompt and strengthen - or excite - their activations, encouraging the model to generate all subjects described in the text prompt. We compare our approach to alternative approaches and demonstrate that it conveys the desired concepts more faithfully across a range of text prompts.

You can find additional information about Attend-and-Excite on the project page, the original codebase, or try it out in a demo.

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

StableDiffusionAttendAndExcitePipeline

class diffusers.StableDiffusionAttendAndExcitePipeline

< >

( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet2DConditionModel scheduler: KarrasDiffusionSchedulers safety_checker: StableDiffusionSafetyChecker feature_extractor: CLIPImageProcessor requires_safety_checker: bool = True )

Parameters

  • vae (AutoencoderKL) — Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
  • text_encoder (CLIPTextModel) — Frozen text-encoder (clip-vit-large-patch14).
  • tokenizer (CLIPTokenizer) — A CLIPTokenizer to tokenize text.
  • unet (UNet2DConditionModel) — A UNet2DConditionModel to denoise the encoded image latents.
  • scheduler (SchedulerMixin) — A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler.
  • safety_checker (StableDiffusionSafetyChecker) — Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the model card for more details about a model’s potential harms.
  • feature_extractor (CLIPImageProcessor) — A CLIPImageProcessor to extract features from generated images; used as inputs to the safety_checker.

Pipeline for text-to-image generation using Stable Diffusion and Attend-and-Excite.

This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

The pipeline also inherits the following loading methods:

__call__

< >

( prompt: Union token_indices: Union height: Optional = None width: Optional = None num_inference_steps: int = 50 guidance_scale: float = 7.5 negative_prompt: Union = None num_images_per_prompt: int = 1 eta: float = 0.0 generator: Union = None latents: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None output_type: Optional = 'pil' return_dict: bool = True callback: Optional = None callback_steps: int = 1 cross_attention_kwargs: Optional = None max_iter_to_alter: int = 25 thresholds: dict = {0: 0.05, 10: 0.5, 20: 0.8} scale_factor: int = 20 attn_res: Optional = (16, 16) clip_skip: Optional = None ) StableDiffusionPipelineOutput or tuple

Parameters

  • prompt (str or List[str], optional) — The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.
  • token_indices (List[int]) — The token indices to alter with attend-and-excite.
  • height (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image.
  • width (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image.
  • num_inference_steps (int, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
  • guidance_scale (float, optional, defaults to 7.5) — A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.
  • negative_prompt (str or List[str], optional) — The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).
  • num_images_per_prompt (int, optional, defaults to 1) — The number of images to generate per prompt.
  • eta (float, optional, defaults to 0.0) — Corresponds to parameter eta (η) from the DDIM paper. Only applies to the DDIMScheduler, and is ignored in other schedulers.
  • generator (torch.Generator or List[torch.Generator], optional) — A torch.Generator to make generation deterministic.
  • latents (torch.Tensor, optional) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator.
  • prompt_embeds (torch.Tensor, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.
  • negative_prompt_embeds (torch.Tensor, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.
  • output_type (str, optional, defaults to "pil") — The output format of the generated image. Choose between PIL.Image or np.array.
  • return_dict (bool, optional, defaults to True) — Whether or not to return a StableDiffusionPipelineOutput instead of a plain tuple.
  • callback (Callable, optional) — A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.Tensor).
  • callback_steps (int, optional, defaults to 1) — The frequency at which the callback function is called. If not specified, the callback is called at every step.
  • cross_attention_kwargs (dict, optional) — A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined in self.processor.
  • max_iter_to_alter (int, optional, defaults to 25) — Number of denoising steps to apply attend-and-excite. The max_iter_to_alter denoising steps are when attend-and-excite is applied. For example, if max_iter_to_alter is 25 and there are a total of 30 denoising steps, the first 25 denoising steps applies attend-and-excite and the last 5 will not.
  • thresholds (dict, optional, defaults to {0 -- 0.05, 10: 0.5, 20: 0.8}): Dictionary defining the iterations and desired thresholds to apply iterative latent refinement in.
  • scale_factor (int, optional, default to 20) — Scale factor to control the step size of each attend-and-excite update.
  • attn_res (tuple, optional, default computed from width and height) — The 2D resolution of the semantic attention map.
  • clip_skip (int, optional) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

Returns

StableDiffusionPipelineOutput or tuple

If return_dict is True, StableDiffusionPipelineOutput is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content.

The call function to the pipeline for generation.

Examples:

>>> import torch
>>> from diffusers import StableDiffusionAttendAndExcitePipeline

>>> pipe = StableDiffusionAttendAndExcitePipeline.from_pretrained(
...     "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
... ).to("cuda")


>>> prompt = "a cat and a frog"

>>> # use get_indices function to find out indices of the tokens you want to alter
>>> pipe.get_indices(prompt)
{0: '<|startoftext|>', 1: 'a</w>', 2: 'cat</w>', 3: 'and</w>', 4: 'a</w>', 5: 'frog</w>', 6: '<|endoftext|>'}

>>> token_indices = [2, 5]
>>> seed = 6141
>>> generator = torch.Generator("cuda").manual_seed(seed)

>>> images = pipe(
...     prompt=prompt,
...     token_indices=token_indices,
...     guidance_scale=7.5,
...     generator=generator,
...     num_inference_steps=50,
...     max_iter_to_alter=25,
... ).images

>>> image = images[0]
>>> image.save(f"../images/{prompt}_{seed}.png")

encode_prompt

< >

( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None lora_scale: Optional = None clip_skip: Optional = None )

Parameters

  • prompt (str or List[str], optional) — prompt to be encoded device — (torch.device): torch device
  • num_images_per_prompt (int) — number of images that should be generated per prompt
  • do_classifier_free_guidance (bool) — whether to use classifier free guidance or not
  • negative_prompt (str or List[str], optional) — The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).
  • prompt_embeds (torch.Tensor, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.
  • negative_prompt_embeds (torch.Tensor, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.
  • lora_scale (float, optional) — A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
  • clip_skip (int, optional) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

Encodes the prompt into text encoder hidden states.

get_indices

< >

( prompt: str )

Utility function to list the indices of the tokens you wish to alte

StableDiffusionPipelineOutput

class diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput

< >

( images: Union nsfw_content_detected: Optional )

Parameters

  • images (List[PIL.Image.Image] or np.ndarray) — List of denoised PIL images of length batch_size or NumPy array of shape (batch_size, height, width, num_channels).
  • nsfw_content_detected (List[bool]) — List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content or None if safety checking could not be performed.

Output class for Stable Diffusion pipelines.

< > Update on GitHub