InstructPix2Pix
InstructPix2Pix: Learning to Follow Image Editing Instructions is by Tim Brooks, Aleksander Holynski and Alexei A. Efros.
The abstract from the paper is:
We propose a method for editing images from human instructions: given an input image and a written instruction that tells the model what to do, our model follows these instructions to edit the image. To obtain training data for this problem, we combine the knowledge of two large pretrained models — a language model (GPT-3) and a text-to-image model (Stable Diffusion) — to generate a large dataset of image editing examples. Our conditional diffusion model, InstructPix2Pix, is trained on our generated data, and generalizes to real images and user-written instructions at inference time. Since it performs edits in the forward pass and does not require per example fine-tuning or inversion, our model edits images quickly, in a matter of seconds. We show compelling editing results for a diverse collection of input images and written instructions.
You can find additional information about InstructPix2Pix on the project page, original codebase, and try it out in a demo.
Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.
StableDiffusionInstructPix2PixPipeline
class diffusers.StableDiffusionInstructPix2PixPipeline
< source >( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet2DConditionModel scheduler: KarrasDiffusionSchedulers safety_checker: StableDiffusionSafetyChecker feature_extractor: CLIPImageProcessor image_encoder: Optional = None requires_safety_checker: bool = True )
Parameters
- vae (AutoencoderKL) — Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
- text_encoder (CLIPTextModel) — Frozen text-encoder (clip-vit-large-patch14).
- tokenizer (CLIPTokenizer) —
A
CLIPTokenizer
to tokenize text. - unet (UNet2DConditionModel) —
A
UNet2DConditionModel
to denoise the encoded image latents. - scheduler (SchedulerMixin) —
A scheduler to be used in combination with
unet
to denoise the encoded image latents. Can be one of DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler. - safety_checker (
StableDiffusionSafetyChecker
) — Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the model card for more details about a model’s potential harms. - feature_extractor (CLIPImageProcessor) —
A
CLIPImageProcessor
to extract features from generated images; used as inputs to thesafety_checker
.
Pipeline for pixel-level image editing by following text instructions (based on Stable Diffusion).
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
- load_textual_inversion() for loading textual inversion embeddings
- load_lora_weights() for loading LoRA weights
- save_lora_weights() for saving LoRA weights
- load_ip_adapter() for loading IP Adapters
__call__
< source >( prompt: Union = None image: Union = None num_inference_steps: int = 100 guidance_scale: float = 7.5 image_guidance_scale: float = 1.5 negative_prompt: Union = None num_images_per_prompt: Optional = 1 eta: float = 0.0 generator: Union = None latents: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None ip_adapter_image: Union = None ip_adapter_image_embeds: Optional = None output_type: Optional = 'pil' return_dict: bool = True callback_on_step_end: Union = None callback_on_step_end_tensor_inputs: List = ['latents'] cross_attention_kwargs: Optional = None **kwargs ) → StableDiffusionPipelineOutput or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide image generation. If not defined, you need to passprompt_embeds
. - image (
torch.Tensor
np.ndarray
,PIL.Image.Image
,List[torch.Tensor]
,List[PIL.Image.Image]
, orList[np.ndarray]
) —Image
or tensor representing an image batch to be repainted according toprompt
. Can also accept image latents asimage
, but if passing latents directly it is not encoded again. - num_inference_steps (
int
, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - guidance_scale (
float
, optional, defaults to 7.5) — A higher guidance scale value encourages the model to generate images closely linked to the textprompt
at the expense of lower image quality. Guidance scale is enabled whenguidance_scale > 1
. - image_guidance_scale (
float
, optional, defaults to 1.5) — Push the generated image towards the initialimage
. Image guidance scale is enabled by settingimage_guidance_scale > 1
. Higher image guidance scale encourages generated images that are closely linked to the sourceimage
, usually at the expense of lower image quality. This pipeline requires a value of at least1
. - negative_prompt (
str
orList[str]
, optional) — The prompt or prompts to guide what to not include in image generation. If not defined, you need to passnegative_prompt_embeds
instead. Ignored when not using guidance (guidance_scale < 1
). - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - eta (
float
, optional, defaults to 0.0) — Corresponds to parameter eta (η) from the DDIM paper. Only applies to the DDIMScheduler, and is ignored in other schedulers. - generator (
torch.Generator
, optional) — Atorch.Generator
to make generation deterministic. - latents (
torch.Tensor
, optional) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied randomgenerator
. - prompt_embeds (
torch.Tensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from theprompt
input argument. - negative_prompt_embeds (
torch.Tensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided,negative_prompt_embeds
are generated from thenegative_prompt
input argument. ip_adapter_image — (PipelineImageInput
, optional): Optional image input to work with IP Adapters. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generated image. Choose betweenPIL.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a StableDiffusionPipelineOutput instead of a plain tuple. - callback_on_step_end (
Callable
,PipelineCallback
,MultiPipelineCallbacks
, optional) — A function or a subclass ofPipelineCallback
orMultiPipelineCallbacks
that is called at the end of each denoising step during the inference. with the following arguments:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
.callback_kwargs
will include a list of all tensors as specified bycallback_on_step_end_tensor_inputs
. - callback_on_step_end_tensor_inputs (
List
, optional) — The list of tensor inputs for thecallback_on_step_end
function. The tensors specified in the list will be passed ascallback_kwargs
argument. You will only be able to include variables listed in the._callback_tensor_inputs
attribute of your pipeline class. - cross_attention_kwargs (
dict
, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined inself.processor
.
Returns
StableDiffusionPipelineOutput or tuple
If return_dict
is True
, StableDiffusionPipelineOutput is returned,
otherwise a tuple
is returned where the first element is a list with the generated images and the
second element is a list of bool
s indicating whether the corresponding generated image contains
“not-safe-for-work” (nsfw) content.
The call function to the pipeline for generation.
Examples:
>>> import PIL
>>> import requests
>>> import torch
>>> from io import BytesIO
>>> from diffusers import StableDiffusionInstructPix2PixPipeline
>>> def download_image(url):
... response = requests.get(url)
... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
>>> img_url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"
>>> image = download_image(img_url).resize((512, 512))
>>> pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
... "timbrooks/instruct-pix2pix", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")
>>> prompt = "make the mountains snowy"
>>> image = pipe(prompt=prompt, image=image).images[0]
load_textual_inversion
< source >( pretrained_model_name_or_path: Union token: Union = None tokenizer: Optional = None text_encoder: Optional = None **kwargs )
Parameters
- pretrained_model_name_or_path (
str
oros.PathLike
orList[str or os.PathLike]
orDict
orList[Dict]
) — Can be either one of the following or a list of them:- A string, the model id (for example
sd-concepts-library/low-poly-hd-logos-icons
) of a pretrained model hosted on the Hub. - A path to a directory (for example
./my_text_inversion_directory/
) containing the textual inversion weights. - A path to a file (for example
./my_text_inversions.pt
) containing textual inversion weights. - A torch state dict.
- A string, the model id (for example
- token (
str
orList[str]
, optional) — Override the token to use for the textual inversion weights. Ifpretrained_model_name_or_path
is a list, thentoken
must also be a list of equal length. - text_encoder (CLIPTextModel, optional) — Frozen text-encoder (clip-vit-large-patch14). If not specified, function will take self.tokenizer.
- tokenizer (CLIPTokenizer, optional) —
A
CLIPTokenizer
to tokenize text. If not specified, function will take self.tokenizer. - weight_name (
str
, optional) — Name of a custom weight file. This should be used when:- The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
name such as
text_inv.bin
. - The saved textual inversion file is in the Automatic1111 format.
- The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
name such as
- cache_dir (
Union[str, os.PathLike]
, optional) — Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. - force_download (
bool
, optional, defaults toFalse
) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. - proxies (
Dict[str, str]
, optional) — A dictionary of proxy servers to use by protocol or endpoint, for example,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}
. The proxies are used on each request. - local_files_only (
bool
, optional, defaults toFalse
) — Whether to only load local model weights and configuration files or not. If set toTrue
, the model won’t be downloaded from the Hub. - token (
str
or bool, optional) — The token to use as HTTP bearer authorization for remote files. IfTrue
, the token generated fromdiffusers-cli login
(stored in~/.huggingface
) is used. - revision (
str
, optional, defaults to"main"
) — The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. - subfolder (
str
, optional, defaults to""
) — The subfolder location of a model file within a larger model repository on the Hub or locally. - mirror (
str
, optional) — Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not guarantee the timeliness or safety of the source, and you should refer to the mirror site for more information.
Load Textual Inversion embeddings into the text encoder of StableDiffusionPipeline (both 🤗 Diffusers and Automatic1111 formats are supported).
Example:
To load a Textual Inversion embedding vector in 🤗 Diffusers format:
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("sd-concepts-library/cat-toy")
prompt = "A <cat-toy> backpack"
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("cat-backpack.png")
To load a Textual Inversion embedding vector in Automatic1111 format, make sure to download the vector first (for example from civitAI) and then load the vector
locally:
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("character.png")
load_lora_weights
< source >( pretrained_model_name_or_path_or_dict: Union adapter_name = None **kwargs )
Parameters
- pretrained_model_name_or_path_or_dict (
str
oros.PathLike
ordict
) — See lora_state_dict(). - kwargs (
dict
, optional) — See lora_state_dict(). - adapter_name (
str
, optional) — Adapter name to be used for referencing the loaded adapter model. If not specified, it will usedefault_{i}
where i is the total number of adapters being loaded.
Load LoRA weights specified in pretrained_model_name_or_path_or_dict
into self.unet
and
self.text_encoder
.
All kwargs are forwarded to self.lora_state_dict
.
See lora_state_dict() for more details on how the state dict is loaded.
See load_lora_into_unet() for more details on how the state dict is
loaded into self.unet
.
See load_lora_into_text_encoder() for more details on how the state
dict is loaded into self.text_encoder
.
save_lora_weights
< source >( save_directory: Union unet_lora_layers: Dict = None text_encoder_lora_layers: Dict = None is_main_process: bool = True weight_name: str = None save_function: Callable = None safe_serialization: bool = True )
Parameters
- save_directory (
str
oros.PathLike
) — Directory to save LoRA parameters to. Will be created if it doesn’t exist. - unet_lora_layers (
Dict[str, torch.nn.Module]
orDict[str, torch.Tensor]
) — State dict of the LoRA layers corresponding to theunet
. - text_encoder_lora_layers (
Dict[str, torch.nn.Module]
orDict[str, torch.Tensor]
) — State dict of the LoRA layers corresponding to thetext_encoder
. Must explicitly pass the text encoder LoRA state dict because it comes from 🤗 Transformers. - is_main_process (
bool
, optional, defaults toTrue
) — Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, setis_main_process=True
only on the main process to avoid race conditions. - save_function (
Callable
) — The function to use to save the state dictionary. Useful during distributed training when you need to replacetorch.save
with another method. Can be configured with the environment variableDIFFUSERS_SAVE_MODE
. - safe_serialization (
bool
, optional, defaults toTrue
) — Whether to save the model usingsafetensors
or the traditional PyTorch way withpickle
.
Save the LoRA parameters corresponding to the UNet and text encoder.
StableDiffusionXLInstructPix2PixPipeline
class diffusers.StableDiffusionXLInstructPix2PixPipeline
< source >( vae: AutoencoderKL text_encoder: CLIPTextModel text_encoder_2: CLIPTextModelWithProjection tokenizer: CLIPTokenizer tokenizer_2: CLIPTokenizer unet: UNet2DConditionModel scheduler: KarrasDiffusionSchedulers force_zeros_for_empty_prompt: bool = True add_watermarker: Optional = None is_cosxl_edit: Optional = False )
Parameters
- vae (AutoencoderKL) — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
- text_encoder (
CLIPTextModel
) — Frozen text-encoder. Stable Diffusion XL uses the text portion of CLIP, specifically the clip-vit-large-patch14 variant. - text_encoder_2 (
CLIPTextModelWithProjection
) — Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of CLIP, specifically the laion/CLIP-ViT-bigG-14-laion2B-39B-b160k variant. - tokenizer (
CLIPTokenizer
) — Tokenizer of class CLIPTokenizer. - tokenizer_2 (
CLIPTokenizer
) — Second Tokenizer of class CLIPTokenizer. - unet (UNet2DConditionModel) — Conditional U-Net architecture to denoise the encoded image latents.
- scheduler (SchedulerMixin) —
A scheduler to be used in combination with
unet
to denoise the encoded image latents. Can be one of DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler. - requires_aesthetics_score (
bool
, optional, defaults to"False"
) — Whether theunet
requires a aesthetic_score condition to be passed during inference. Also see the config ofstabilityai/stable-diffusion-xl-refiner-1-0
. - force_zeros_for_empty_prompt (
bool
, optional, defaults to"True"
) — Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config ofstabilityai/stable-diffusion-xl-base-1-0
. - add_watermarker (
bool
, optional) — Whether to use the invisible_watermark library to watermark output images. If not defined, it will default to True if the package is installed, otherwise no watermarker will be used. - is_cosxl_edit (
bool
, optional) — When set the image latents are scaled.
Pipeline for pixel-level image editing by following text instructions. Based on Stable Diffusion XL.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
The pipeline also inherits the following loading methods:
- load_textual_inversion() for loading textual inversion embeddings
- from_single_file() for loading
.ckpt
files - load_lora_weights() for loading LoRA weights
- save_lora_weights() for saving LoRA weights
__call__
< source >( prompt: Union = None prompt_2: Union = None image: Union = None height: Optional = None width: Optional = None num_inference_steps: int = 100 denoising_end: Optional = None guidance_scale: float = 5.0 image_guidance_scale: float = 1.5 negative_prompt: Union = None negative_prompt_2: Union = None num_images_per_prompt: Optional = 1 eta: float = 0.0 generator: Union = None latents: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None pooled_prompt_embeds: Optional = None negative_pooled_prompt_embeds: Optional = None output_type: Optional = 'pil' return_dict: bool = True callback: Optional = None callback_steps: int = 1 cross_attention_kwargs: Optional = None guidance_rescale: float = 0.0 original_size: Tuple = None crops_coords_top_left: Tuple = (0, 0) target_size: Tuple = None ) → ~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds
. instead. - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in both text-encoders - image (
torch.Tensor
orPIL.Image.Image
ornp.ndarray
orList[torch.Tensor]
orList[PIL.Image.Image]
orList[np.ndarray]
) — The image(s) to modify with the pipeline. - height (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. - width (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. - num_inference_steps (
int
, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - denoising_end (
float
, optional) — When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be completed before it is intentionally prematurely terminated. As a result, the returned sample will still retain a substantial amount of noise as determined by the discrete timesteps selected by the scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a “Mixture of Denoisers” multi-pipeline setup, as elaborated in Refining the Image Output - guidance_scale (
float
, optional, defaults to 5.0) — Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scale
is defined asw
of equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the textprompt
, usually at the expense of lower image quality. - image_guidance_scale (
float
, optional, defaults to 1.5) — Image guidance scale is to push the generated image towards the initial imageimage
. Image guidance scale is enabled by settingimage_guidance_scale > 1
. Higher image guidance scale encourages to generate images that are closely linked to the source imageimage
, usually at the expense of lower image quality. This pipeline requires a value of at least1
. - negative_prompt (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
). - negative_prompt_2 (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation to be sent totokenizer_2
andtext_encoder_2
. If not defined,negative_prompt
is used in both text-encoders. - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - eta (
float
, optional, defaults to 0.0) — Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to schedulers.DDIMScheduler, will be ignored for others. - generator (
torch.Generator
orList[torch.Generator]
, optional) — One or a list of torch generator(s) to make generation deterministic. - latents (
torch.Tensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied randomgenerator
. - prompt_embeds (
torch.Tensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - negative_prompt_embeds (
torch.Tensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument. - pooled_prompt_embeds (
torch.Tensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - negative_pooled_prompt_embeds (
torch.Tensor
, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated fromnegative_prompt
input argument. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generate image. Choose between PIL:PIL.Image.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput
instead of a plain tuple. - callback (
Callable
, optional) — A function that will be called everycallback_steps
steps during inference. The function will be called with the following arguments:callback(step: int, timestep: int, latents: torch.Tensor)
. - callback_steps (
int
, optional, defaults to 1) — The frequency at which thecallback
function will be called. If not specified, the callback will be called at every step. - cross_attention_kwargs (
dict
, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined underself.processor
in diffusers.models.attention_processor. - guidance_rescale (
float
, optional, defaults to 0.0) — Guidance rescale factor proposed by Common Diffusion Noise Schedules and Sample Steps are Flawedguidance_scale
is defined asφ
in equation 16. of Common Diffusion Noise Schedules and Sample Steps are Flawed. Guidance rescale factor should fix overexposure when using zero terminal SNR. - original_size (
Tuple[int]
, optional, defaults to (1024, 1024)) — Iforiginal_size
is not the same astarget_size
the image will appear to be down- or upsampled.original_size
defaults to(height, width)
if not specified. Part of SDXL’s micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952. - crops_coords_top_left (
Tuple[int]
, optional, defaults to (0, 0)) —crops_coords_top_left
can be used to generate an image that appears to be “cropped” from the positioncrops_coords_top_left
downwards. Favorable, well-centered images are usually achieved by settingcrops_coords_top_left
to (0, 0). Part of SDXL’s micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952. - target_size (
Tuple[int]
, optional, defaults to (1024, 1024)) — For most cases,target_size
should be set to the desired height and width of the generated image. If not specified it will default to(height, width)
. Part of SDXL’s micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952. - aesthetic_score (
float
, optional, defaults to 6.0) — Used to simulate an aesthetic score of the generated image by influencing the positive text condition. Part of SDXL’s micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952. - negative_aesthetic_score (
float
, optional, defaults to 2.5) — Part of SDXL’s micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952. Can be used to simulate an aesthetic score of the generated image by influencing the negative text condition.
Returns
~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
or tuple
~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
if return_dict
is True, otherwise a
tuple
. When returning a tuple, the first element is a list with the generated images.
Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers import StableDiffusionXLInstructPix2PixPipeline
>>> from diffusers.utils import load_image
>>> resolution = 768
>>> image = load_image(
... "https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"
... ).resize((resolution, resolution))
>>> edit_instruction = "Turn sky into a cloudy one"
>>> pipe = StableDiffusionXLInstructPix2PixPipeline.from_pretrained(
... "diffusers/sdxl-instructpix2pix-768", torch_dtype=torch.float16
... ).to("cuda")
>>> edited_image = pipe(
... prompt=edit_instruction,
... image=image,
... height=resolution,
... width=resolution,
... guidance_scale=3.0,
... image_guidance_scale=1.5,
... num_inference_steps=30,
... ).images[0]
>>> edited_image
encode_prompt
< source >( prompt: str prompt_2: Optional = None device: Optional = None num_images_per_prompt: int = 1 do_classifier_free_guidance: bool = True negative_prompt: Optional = None negative_prompt_2: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None pooled_prompt_embeds: Optional = None negative_pooled_prompt_embeds: Optional = None lora_scale: Optional = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in both text-encoders device — (torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - do_classifier_free_guidance (
bool
) — whether to use classifier free guidance or not - negative_prompt (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
). - negative_prompt_2 (
str
orList[str]
, optional) — The prompt or prompts not to guide the image generation to be sent totokenizer_2
andtext_encoder_2
. If not defined,negative_prompt
is used in both text-encoders - prompt_embeds (
torch.Tensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - negative_prompt_embeds (
torch.Tensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument. - pooled_prompt_embeds (
torch.Tensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - negative_pooled_prompt_embeds (
torch.Tensor
, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated fromnegative_prompt
input argument. - lora_scale (
float
, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
Encodes the prompt into text encoder hidden states.