Diffusers documentation

HunyuanVideo15Transformer3DModel

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v0.36.0).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

HunyuanVideo15Transformer3DModel

A Diffusion Transformer model for 3D video-like data used in HunyuanVideo1.5.

The model can be loaded with the following code snippet.

from diffusers import HunyuanVideo15Transformer3DModel

transformer = HunyuanVideo15Transformer3DModel.from_pretrained("hunyuanvideo-community/HunyuanVideo-1.5-Diffusers-480p_t2v" subfolder="transformer", torch_dtype=torch.bfloat16)

HunyuanVideo15Transformer3DModel

class diffusers.HunyuanVideo15Transformer3DModel

< >

( in_channels: int = 65 out_channels: int = 32 num_attention_heads: int = 16 attention_head_dim: int = 128 num_layers: int = 54 num_refiner_layers: int = 2 mlp_ratio: float = 4.0 patch_size: int = 1 patch_size_t: int = 1 qk_norm: str = 'rms_norm' text_embed_dim: int = 3584 text_embed_2_dim: int = 1472 image_embed_dim: int = 1152 rope_theta: float = 256.0 rope_axes_dim: typing.Tuple[int, ...] = (16, 56, 56) target_size: int = 640 task_type: str = 'i2v' use_meanflow: bool = False )

Parameters

  • in_channels (int, defaults to 16) — The number of channels in the input.
  • out_channels (int, defaults to 16) — The number of channels in the output.
  • num_attention_heads (int, defaults to 24) — The number of heads to use for multi-head attention.
  • attention_head_dim (int, defaults to 128) — The number of channels in each head.
  • num_layers (int, defaults to 20) — The number of layers of dual-stream blocks to use.
  • num_refiner_layers (int, defaults to 2) — The number of layers of refiner blocks to use.
  • mlp_ratio (float, defaults to 4.0) — The ratio of the hidden layer size to the input size in the feedforward network.
  • patch_size (int, defaults to 2) — The size of the spatial patches to use in the patch embedding layer.
  • patch_size_t (int, defaults to 1) — The size of the tmeporal patches to use in the patch embedding layer.
  • qk_norm (str, defaults to rms_norm) — The normalization to use for the query and key projections in the attention layers.
  • guidance_embeds (bool, defaults to True) — Whether to use guidance embeddings in the model.
  • text_embed_dim (int, defaults to 4096) — Input dimension of text embeddings from the text encoder.
  • pooled_projection_dim (int, defaults to 768) — The dimension of the pooled projection of the text embeddings.
  • rope_theta (float, defaults to 256.0) — The value of theta to use in the RoPE layer.
  • rope_axes_dim (Tuple[int], defaults to (16, 56, 56)) — The dimensions of the axes to use in the RoPE layer.

A Transformer model for video-like data used in HunyuanVideo1.5.

Transformer2DModelOutput

class diffusers.models.modeling_outputs.Transformer2DModelOutput

< >

( sample: torch.Tensor )

Parameters

  • sample (torch.Tensor of shape (batch_size, num_channels, height, width) or (batch size, num_vector_embeds - 1, num_latent_pixels) if Transformer2DModel is discrete) — The hidden states output conditioned on the encoder_hidden_states input. If discrete, returns probability distributions for the unnoised latent pixels.

The output of Transformer2DModel.

Update on GitHub