Diffusers documentation
HunyuanVideo15Transformer3DModel
HunyuanVideo15Transformer3DModel
A Diffusion Transformer model for 3D video-like data used in HunyuanVideo1.5.
The model can be loaded with the following code snippet.
from diffusers import HunyuanVideo15Transformer3DModel
transformer = HunyuanVideo15Transformer3DModel.from_pretrained("hunyuanvideo-community/HunyuanVideo-1.5-Diffusers-480p_t2v" subfolder="transformer", torch_dtype=torch.bfloat16)HunyuanVideo15Transformer3DModel
class diffusers.HunyuanVideo15Transformer3DModel
< source >( in_channels: int = 65 out_channels: int = 32 num_attention_heads: int = 16 attention_head_dim: int = 128 num_layers: int = 54 num_refiner_layers: int = 2 mlp_ratio: float = 4.0 patch_size: int = 1 patch_size_t: int = 1 qk_norm: str = 'rms_norm' text_embed_dim: int = 3584 text_embed_2_dim: int = 1472 image_embed_dim: int = 1152 rope_theta: float = 256.0 rope_axes_dim: typing.Tuple[int, ...] = (16, 56, 56) target_size: int = 640 task_type: str = 'i2v' use_meanflow: bool = False )
Parameters
- in_channels (
int, defaults to16) — The number of channels in the input. - out_channels (
int, defaults to16) — The number of channels in the output. - num_attention_heads (
int, defaults to24) — The number of heads to use for multi-head attention. - attention_head_dim (
int, defaults to128) — The number of channels in each head. - num_layers (
int, defaults to20) — The number of layers of dual-stream blocks to use. - num_refiner_layers (
int, defaults to2) — The number of layers of refiner blocks to use. - mlp_ratio (
float, defaults to4.0) — The ratio of the hidden layer size to the input size in the feedforward network. - patch_size (
int, defaults to2) — The size of the spatial patches to use in the patch embedding layer. - patch_size_t (
int, defaults to1) — The size of the tmeporal patches to use in the patch embedding layer. - qk_norm (
str, defaults torms_norm) — The normalization to use for the query and key projections in the attention layers. - guidance_embeds (
bool, defaults toTrue) — Whether to use guidance embeddings in the model. - text_embed_dim (
int, defaults to4096) — Input dimension of text embeddings from the text encoder. - pooled_projection_dim (
int, defaults to768) — The dimension of the pooled projection of the text embeddings. - rope_theta (
float, defaults to256.0) — The value of theta to use in the RoPE layer. - rope_axes_dim (
Tuple[int], defaults to(16, 56, 56)) — The dimensions of the axes to use in the RoPE layer.
A Transformer model for video-like data used in HunyuanVideo1.5.
Transformer2DModelOutput
class diffusers.models.modeling_outputs.Transformer2DModelOutput
< source >( sample: torch.Tensor )
Parameters
- sample (
torch.Tensorof shape(batch_size, num_channels, height, width)or(batch size, num_vector_embeds - 1, num_latent_pixels)if Transformer2DModel is discrete) — The hidden states output conditioned on theencoder_hidden_statesinput. If discrete, returns probability distributions for the unnoised latent pixels.
The output of Transformer2DModel.