Datasets documentation

Process text data

You are viewing v2.7.0 version. A newer version v3.2.0 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Process text data

This guide shows specific methods for processing text datasets. Learn how to:

  • Tokenize a dataset with map().
  • Align dataset labels with label ids for NLI datasets.

For a guide on how to process any type of dataset, take a look at the general process guide.

Map

The map() function supports processing batches of examples at once which speeds up tokenization.

Load a tokenizer from 🤗 Transformers:

>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

Set the batched parameter to True in the map() function to apply the tokenizer to batches of examples:

>>> dataset = dataset.map(lambda examples: tokenizer(examples["text"]), batched=True)
>>> dataset[0]
{'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .', 
 'label': 1, 
 'input_ids': [101, 1996, 2600, 2003, 16036, 2000, 2022, 1996, 7398, 2301, 1005, 1055, 2047, 1000, 16608, 1000, 1998, 2008, 2002, 1005, 1055, 2183, 2000, 2191, 1037, 17624, 2130, 3618, 2084, 7779, 29058, 8625, 13327, 1010, 3744, 1011, 18856, 19513, 3158, 5477, 4168, 2030, 7112, 16562, 2140, 1012, 102], 
 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}

The map() function converts the returned values to a PyArrow-supported format. But explicitly returning the tensors as NumPy arrays is faster because it is a natively supported PyArrow format. Set return_tensors="np" when you tokenize your text:

>>> dataset = dataset.map(lambda examples: tokenizer(examples["text"], return_tensors="np"), batched=True)

Align

The align_labels_with_mapping() function aligns a dataset label id with the label name. Not all 🤗 Transformers models follow the prescribed label mapping of the original dataset, especially for NLI datasets. For example, the MNLI dataset uses the following label mapping:

>>> label2id = {"entailment": 0, "neutral": 1, "contradiction": 2}

To align the dataset label mapping with the mapping used by a model, create a dictionary of the label name and id to align on:

>>> label2id = {"contradiction": 0, "neutral": 1, "entailment": 2}

Pass the dictionary of the label mappings to the align_labels_with_mapping() function, and the column to align on:

>>> from datasets import load_dataset

>>> mnli = load_dataset("glue", "mnli", split="train")
>>> mnli_aligned = mnli.align_labels_with_mapping(label2id, "label")

You can also use this function to assign a custom mapping of labels to ids.