Datasets documentation

Process audio data

You are viewing v2.7.0 version. A newer version v3.2.0 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Process audio data

This guide shows specific methods for processing audio datasets. Learn how to:

  • Resample the sampling rate.
  • Use map() with audio datasets.

For a guide on how to process any type of dataset, take a look at the general process guide.

Cast

The cast_column() function is used to cast a column to another feature to be decoded. When you use this function with the Audio feature, you can resample the sampling rate:

>>> from datasets import load_dataset, Audio

>>> dataset = load_dataset("PolyAI/minds14", "en-US", split="train")
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))

Audio files are decoded and resampled on-the-fly, so the next time you access an example, the audio file is resampled to 16kHz:

>>> dataset[0]["audio"]
{'array': array([ 2.3443763e-05,  2.1729663e-04,  2.2145823e-04, ...,
         3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32),
 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
 'sampling_rate': 16000}

Map

The map() function helps preprocess your entire dataset at once. Depending on the type of model you’re working with, you’ll need to either load a feature extractor or a processor.

  • For pretrained speech recognition models, load a feature extractor and tokenizer and combine them in a processor:

    >>> from transformers import AutoTokenizer, AutoFeatureExtractor, AutoProcessor
    
    >>> model_checkpoint = "facebook/wav2vec2-large-xlsr-53"
    # after defining a vocab.json file you can instantiate a tokenizer object:
    >>> tokenizer = AutoTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
    >>> feature_extractor = AutoFeatureExtractor.from_pretrained(model_checkpoint)
    >>> processor = AutoProcessor.from_pretrained(feature_extractor=feature_extractor, tokenizer=tokenizer)
  • For fine-tuned speech recognition models, you only need to load a processor:

    >>> from transformers import AutoProcessor
    
    >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")

When you use map() with your preprocessing function, include the audio column to ensure you’re actually resampling the audio data:

>>> def prepare_dataset(batch):
...     audio = batch["audio"]
...     batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
...     batch["input_length"] = len(batch["input_values"])
...     with processor.as_target_processor():
...         batch["labels"] = processor(batch["sentence"]).input_ids
...     return batch
>>> dataset = dataset.map(prepare_dataset, remove_columns=dataset.column_names)